
����������
�������

Citation: Al Alam, P.; Constantin, J.;

Constantin, I.; Lopez, C. Partitioning

of Transportation Networks by

Efficient Evolutionary Clustering and

Density Peak. Algorithms 2022, 15, 76.

https://doi.org/10.3390/a15030076

Academic Editors: Szymon Łukasik

and Piotr A. Kowalski

Received: 20 January 2022

Accepted: 15 February 2022

Published: 24 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Partitioning of Transportation Networks by Efficient
Evolutionary Clustering and Density Peaks

Pamela Al Alam 1 , Joseph Constantin 2,* , Ibtissam Constantin 2 and Clelia Lopez 3

1 LISIC, University of Littoral Côte d’Opale (ULCO), Calais, BP 719, CEDEX, 62228 Calais, France;
pamela.al-alam@univ-littoral.fr

2 LaRRIS, Faculty of Sciences, Lebanese University, Fanar, Jdeidet BP 90656, Lebanon;
ibtissamconstantin@ul.edu.lb

3 ERIC, Université de Lyon, Université de Lyon 2, ERIC UR 3083 5 Avenue Pierre Mendès France,
CEDEX, F69676 Bron, France; clelia@clelialopez.com

* Correspondence: cjoseph@ul.edu.lb

Abstract: Road traffic congestion has became a major problem in most countries because it affects
sustainable mobility. Partitioning a transport network into homogeneous areas can be very useful
for monitoring traffic as congestion is spatially correlated in adjacent roads, and it propagates at
different speeds as a function of time. Spectral clustering has been successfully applied for the
partitioning of transportation networks based on the spatial characteristics of congestion at a specific
time. However, this type of classification is not suitable for data that change over time. Evolutionary
spectral clustering represents a state-of-the-art algorithm for grouping objects evolving over time.
However, the disadvantages of this algorithm are the cubic time complexity and the high memory
demand, which make it insufficient to handle a large number of data sets. In this paper, we propose
an efficient evolutionary spectral clustering algorithm that solves the drawbacks of evolutionary
spectral clustering by reducing the size of the eigenvalue problem. This algorithm is applied in a
dynamic environment to partition a transportation network into connected homogeneous regions
that evolve with time. The number of clusters is selected automatically by using a density peak
algorithm adopted for the classification of traffic congestion based on the sparse snake similarity
matrix. Experiments on the real network of Amsterdam city demonstrate the superiority of the
proposed algorithm in robustness and effectiveness.

Keywords: algorithms; density peak; efficient evolutionary spectral clustering; transportation
network; snake similarities; traffic congestion

1. Introduction

Most densely populated cities endure road traffic congestion. Traffic congestion
causes major problems, such as time delays, air pollution, fuel consumption and accident
risks, which are usually caused by the fact that road capacity cannot meet the increasing
traffic demand. Traffic congestion is caused by unplanned roads, the dense volume of
vehicles and the presence of critical congestion areas. In unplanned roads, transportation
departments do not handle traffic closures due to extreme weather conditions and other
unforeseen events.

Recently, congestion problems have increased due to the growth in population and
the different changes in population density. At present, the traffic system has become a
very complex problem because traffic changes are uncertain [1]. Therefore, it is difficult to
obtain high-precision characterization using a standard knowledge model.

Many conventional methods have been developed to solve the problem of traffic
congestion, such as urban decentralization, which can be difficult to enforce in practice [2],
and urban planning, which takes into consideration the increasing number of cars in cities
before building their infrastructure [3]. However, these methods can be costly considering
the limited land resources.

Algorithms 2022, 15, 76. https://doi.org/10.3390/a15030076 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15030076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2907-3399
https://orcid.org/0000-0002-7911-1218
https://orcid.org/0000-0002-4252-0819
https://orcid.org/0000-0002-7674-3519
https://doi.org/10.3390/a15030076
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15030076?type=check_update&version=3

Algorithms 2022, 15, 76 2 of 35

One can use applications that consider only the present congestion situations on
suggested roads to navigate within cities. However, few of these applications reroute users
according to real-time traffic congestion as the trip progresses [4,5]. Hence, systems and
algorithms must be designed in such a way that people can avoid traffic congestion in real
time. In addition, other recent studies have attempted to predict traffic congestion in cities.
A more specific approach for tackling the problem of linking traffic jams is the partitioning
of the links according to traffic congestion in order to devise control strategies for solving
this problem. Partitioning a network of roads into homogeneous groups can be extremely
useful for traffic control considering that the congestion is spatially correlated in adjacent
roads and that it propagates with different speeds [6].

In [7], the authors designed a network partition method by using the normalized cut.
This method was further adapted and improved, where the authors developed a method
based on the definition of the snake similarity matrix and application of the normalized
cut algorithm in order to detect directional congestion within clusters and improve the
performance of low connectivity networks [8].

Previous work on trajectory data clustering has mainly focused on the case where
objects move freely in Euclidean space [9,10]. However, these approaches failed to account
for an underlying network that constrains movement. However, network constraints play
a crucial role in determining the similarity measure between the trajectories to be clustered.

Another method was proposed in which the authors elaborated an approach based
on discovering the clusters of trajectories by grouping similar trajectories that visited the
same links of the network [11]. Then, they extended their work to the case of links, where
they grouped the common links that were visited by a large number of trajectories [12].
Therefore, the community-detection algorithm used in the clustering step of their pro-
posed framework can be sensitive to the presence of noise, which can degrade the quality
of clusters.

However, these methods cannot be directly applied to dynamic frameworks. In order
to study the feasibility of the control strategy to improve the transportation networks’
performance, in this paper, we focus on the clustering of transportation networks into
homogeneous traffic partitions that evolve over time [13]. Data are essential to the planning
and management of issues related to transportation networks. Instead of relying on
conventional models, transportation research is increasingly data-driven. With the growing
quantity and quality of data being collected from intelligent transportation systems, data-
driven transportation research relies on new generation techniques to analyze these data.

Recently, data-driven innovation in transportation science follows two main ap-
proaches: the technology-oriented approach to enhance the data resources available to
the platform [14] and the methodology-oriented approach to improve the software part
of the platform [15]. Exploratory data analysis is a heuristic search technique for finding
significant relationships between variables in large data sets. Its efficiency is key to deriving
insights from big data. It is the first technique when approaching the data. Exploratory data
analysis has the objective of identifying attributes in a data set, using univariate data analy-
sis to characterize the data, detecting and minimizing the impact of missing and aberrant
values, detecting errors and, finally, combining features to generate new features [16].

In our case, to perform network partitioning, both the network topology and the link
speeds for all time periods are needed. Therefore, data preparation is needed to create a
validated data set for evolutionary spectral clustering. Data preparation aims to remove
travel time outliers and coarsen the large-scale network in order to improve the computation
time and to estimate link speeds. The data are gathered from the Amsterdam transportation
network. The network topology is derived from both cameras and geographic information
systems. An algorithm was developed to compute missing data [17].

Spectral clustering has been successfully applied to the clustering of transportation
networks based on the spatial features of congestion at specific times [7,8,17]. Previous
works have proposed a simple approach to this type of problem that consists of performing
static clustering at each time step using only the most recent data. The main drawback

Algorithms 2022, 15, 76 3 of 35

of this approach is that it does not explicitly take into account the temporal aspects of
traffic states.

Evolutionary spectral clustering represents algorithms for grouping objects evolving
over time. It outperforms traditional static clustering by producing clustering results that
can adapt to data drifts while being robust to short-term noise. According to [18], in the
context of evolutionary spectral clustering, a good clustering result should fit the current
data well while simultaneously not deviating too dramatically from the recent history.

In our previous work, we applied the evolutionary spectral clustering algorithm in
order to partition a road network between congested and fluid zones [19]. However, the
major drawback of this algorithm is the cubic time complexity and the high memory
demand for computing the Laplacian matrix that makes it insufficient to handle data sets
characterized by a large number of patterns.

This paper proposes an efficient evolutionary spectral clustering algorithm that pro-
vides a solution to this problem. The proposed algorithm introduces the notion of a
smoothed Laplacian matrix with a weighted sum of current and past similarity matrices to
efficiently solve the eigenvalue problem by means of the incomplete Cholesky decomposi-
tion. It is also equipped with a stopping criterion based on the convergence of the cluster
assignments after the selection of each pivot in place of the classical stopping condition
based on the low-rank assumption. In order to improve the network’s performance, the
similarity matrix is computed in a way to put more weights on neighboring links and to
facilitate the connectivity of the clusters.

The similarity, in this case, will be a sparse matrix, as some links have zero similarity,
which can simplify the complexity of the clustering algorithm [8]. Determining the number
of clusters in a data set is a frequent problem in data clustering. Choosing the appropriate
number of clusters is often ambiguous, with interpretations depending on the shape
and scale of the distribution of points in a data set. Many measurements have been
developed for finding the optimal number of clusters. In early research, the authors
proposed an algorithm to estimate the optimal number of clusters in categorical data
clustering by a silhouette coefficient, which is a useful technique for assessing the number
of clusters [20,21].

The silhouette of data is a measure of how closely it is matched to data within its
cluster and how loosely it is matched to data of the neighboring cluster. A silhouette close
to 1 implies the datum is in an appropriate cluster, whereas a silhouette close to -1 implies
the datum is in the wrong cluster. However, a silhouette only reveals the quality of data
in some specific set, and it does not work well in ring-shaped data sets. The gap statistic
method is another method used for detecting the number of clusters. The key idea of the
gap method is to compare within-cluster dispersion in the observed data to the expected
within-cluster dispersion. The gap method performs well assuming that the data come
from an appropriate distribution [22].

In order to identify the correct number of clusters to return from a hierarchical cluster-
ing, an efficient algorithm was developed. This algorithm makes use of the same evaluation
function that is used by a hierarchical algorithm during clustering to construct an evalu-
ation graph where the x-axis is the number of clusters, and the y-axis is the value of the
evaluation function at x clusters. The point of the maximum curvature of this graph is used
as the number of clusters to return. This point is determined by finding the area between
the two lines that most closely fit the curve [23]. However, this method works poorly with
mixed data types, and it does not work well on very large data sets.

In this paper, we introduce the density peaks algorithm, which has the ability to
recognize clusters regardless of their shape. The clustering is performed using the efficient
evolutionary spectral clustering algorithm, and we adapted the density peaks cluster-
ing algorithm to automatically find the number of clusters, which dynamically changes
over time.

Algorithms 2022, 15, 76 4 of 35

This algorithm is based on the assumptions that the cluster centers are surrounded by
neighbors with a lower local density and that they also have relatively large distances from
other data points with a higher local density. It also has the advantage of visualizing the
structure of the data in the decision graph. The proposed algorithm is compared with the
modularity and the eigengap methods to show its effectiveness.

The new contributions of this paper are summarized as follows:

• We optimize the efficient evolutionary spectral clustering algorithm in order to cluster
real world traffic data sets collected from the transportation network of Amsterdam
city [17]. This algorithm was built in order to handle traffic evolving over time.

• We extend this algorithm for the preserving cluster membership framework by com-
puting a new sparse similarity matrix that considers traffic at previous times. We
show that this algorithm minimizes time and space complexities. We prove that the
proposed efficient evolutionary spectral clustering algorithm provides more robust-
ness and effectiveness compared with other static clustering methods in the case of a
transportation network.

• We compute the number of clusters for each time period using the density peak
algorithm. We modify this algorithm in order to compute the distance between
snakes based on the sparse snake similarity matrix. This algorithm is proven to be
more effective than the modularity and the eigengap methods in the case of efficient
evolutionary spectral clustering.

• We convert the transportation network into different graph models in order to find
directional congestion. We study the evolution of the graph over different time periods
of the day. We prove which clustering method is the most efficient for clustering all
time-dependent road speed observations into 3D speed maps, and we study the
computational times to partition the road network.

The paper is structured as follows: in Section 2, we present the graph models and how
to compute the similarity matrix. We also introduce the spectral clustering algorithm ans
the evolutionary spectral clustering algorithm, and we propose an efficient evolutionary
spectral clustering algorithm for the partitioning of a transportation network. In Section 3,
we explain how to automatically find the number of clusters using the density peak
algorithm. Section 4 shows the experimental results, and finally the paper is summarized
with our conclusions in Section 5.

2. Methodology

Traffic data change quickly; hence, static spectral clustering algorithms are unable to
deal with data where the characteristics of link speeds to be clustered change over time.
We are interested in developing a methodology based on evolutionary spectral clustering
to dynamically partition a graph-based traffic network into connected and homogeneous
clusters. First, we define the network of links and how to convert it into a graph of links.
Next, we convert the graph of links into a graph of snakes, and then we compute the
similarity matrix between snakes in order to apply clustering algorithms.

Next, we briefly explain the spectral clustering algorithm. We also introduce the
evolutionary spectral clustering framework through normalized cuts and finally we give the
efficient evolutionary spectral clustering algorithm in order to minimize the time and space
complexities. Figure 1 shows the data flow chart (DFC) that describes our methodological
steps, and Glossary shows a summary of notation symbols used in the paper.

Algorithms 2022, 15, 76 5 of 35

Begin

End

Convert the transportation
network into a graph of links.

Convert the graph of links
into a graph of snakes.

Compute the snake similarity
matrix.

Apply Efficient Evolutionary
Spectral clustering.

Find the number of clusters
by using density peaks.

Apply the clustering results to
Amsterdam network.

Obtain homogenous regions
that evolve over time.

Figure 1. A data flow chart describing our methodological steps.

2.1. Graph Models

This section defines the structure of the network of links and explains how to convert
it into a graph of links and a graph of snakes in order to apply the spectral clustering
algorithm.

2.1.1. Network of Links

A network of links is defined as Ω = (I, R) comprising a set of intersection points
I = {I1, I2, . . . InI} that are connected by a set of links R = {R1, R2, . . . RnR}, where for each
link Ri, a speed value is assigned to it. Given the network of roads, we are now able to
convert it into a graph of links.

2.1.2. Graph of Links

We distinguish two possible representations in order to convert the network of links
into a graph of links, which are the primal graph and the dual graph (Figure 2). In the
first representation, the primal graph is constructed by considering each intersection in the
network as a node and adding an edge or link between each pair of nodes if there is at least
one link connecting them.

Algorithms 2022, 15, 76 6 of 35

1

2

4

3

1

2
3

4

5 6

7 8

9

11 10

(a)

(b)

1

2

4

3

1

2
3

4

5 6

9

8

7

10 11

Figure 2. The two graph models are explained using two different examples. (a) The primal graph
model, which consists of representing the intersections by nodes and the roads by edges. (b) The
dual graph model, which consists of considering the roads as the graph nodes and the crossing point
between them as edges.

In this representation, we maintain the same shape of the network of links; the edges
in the graph follow the paths of the real network of links. In the second representation,
the dual graph is constructed by considering each link in the network as a node and by
establishing an edge between each pair of possible nodes if there is at least one common
intersection between them.

In this paper, we use the primal graph, and we model the data of a network of links as
a graph G = (V, E) in which V and E are the sets of nodes and links, respectively. Two links
are spatially connected if either the end or the beginning of them are connected to the same
intersection. Based on this definition, all the links entering or exiting the same intersection
are assumed to be connected. Moreover, links connecting to the same intersection are
considered adjacent. In order to partition the graph edges into connected homogeneous
traffic states, we begin to build a graph of snakes.

2.1.3. Graph of Snakes

The graph of snakes is represented as a undirected graph G = (Γ, Ω). The set of
vertices Γ = {T1, T2, . . . , TN}, where N = 208 represents the number of network snakes,
and the set of edges Ω represents the similarity between snakes. Although there is a one-to-
one association between links and snakes, the same name Γ is used for both the links and
snakes. The value of N is computed after coarsening the large-scale transportation network
of Amsterdam and removing travel time outliers [17]. A snake is formed as a concatenation
of a number L of adjacent links with similar speeds. Each snake is defined in an iterative
process starting from an individual link in the graph.

A snake is defined by Ti = {ti1, . . . , til , . . . , tiL}, where 1 ≤ l ≤ L, L ≤ N is the size
of the snake, til = {id, ν} is the link composed from an identifier id and a link speed ν, and
tik and tik+1 are connected links. The connected clusters’ dissimilarity is used to evaluate
the performance of the clustering algorithm for different values of L [17].

For each of the links, we iteratively build a snake, which is a sequence of links, with
the objective of having a minimum variance of all the chosen link speeds at each step.
One can consider this as a snake that starts from a link and grows by attracting the most
similar adjacent link iteratively (Figure 3). Figure 3 shows an example of a snake, initialized

Algorithms 2022, 15, 76 7 of 35

by a link in red. The green links represent the neighborhood, according to two- and
three-dimensional approaches.

y

x

t

x

y

(a) (b)

Figure 3. Example of a snake initialized by a link in red. The green links represent the neighborhood,
according to a 2D approach (a) and a 3D approach (b) [24].

Note that, at each step, the most similar link to the snake is the adjacent link with the
closest speed value to the average speed values of the links in the snake. This procedure
identifies interesting patterns as the variance grows with the size of the links. This observa-
tion is related to the fact that some parts of the graph are more similar than others, and if a
large number of dissimilar links are added, high variance is unavoidable.

Thus, in each step, each snake identifies all the adjacent links and adds the one that
has the smallest variance value to the average value of previously added links in that snake.
This procedure continues until the snake encompasses all the links in the network. The
variance value of the snake at each step l can be computed by:

σ2
l = σ2

l−1 +
1
l

[
(νl − νl)(νl − νl−1)− σ2

l−1

]
, (1)

where
νl = νl−1 +

1
l
(νl − νl−1), (2)

where νl denotes the mean speed of the snake at each step l, and νl is the speed of the link
added in the l-th step.

Clustering the snakes of links requires the construction of a weighted graph that
encodes the similarity between data snakes. In the next section, we will explain how to
build the snake similarity matrix.

2.2. Similarity

There are many proposed methods in the literature to construct a similarity matrix for
a graph, such as the inner product of feature vectors, the Gaussian similarity and the cosine
similarity [25]. In our study, the goal is to define a similarity between each pair of links in
the network that takes into account both homogeneity and spatial connectivity. Using this
similarity measure, a fully connected graph is built in which one edge exists between every
two nodes, meaning that every two snakes in the network are similar.

The sequence of the links in a snake not only represents the links with the close speed
values but also has some information about the spatial connectivity of the links. As the
size of the snake grows, this measure of similarity gives less forget weight on the links that
are collected. After some iterations, the snake does not have any good options to add and
starts adding links with variant speeds leading to a higher variance.

To further investigate, we plot the variance of the first and the second snake of the
network of links (Figure 4). Based on these properties of the snake, we propose to put more
weights on the links that are spatially closer to each other, and their corresponding snakes
will converge to the same point [17].

Algorithms 2022, 15, 76 8 of 35

0 16 32 48 64 80 96 112 128 144 160 176 192 208

Size of Snake

0

3

6

9

12

15

S
n

a
k
e

 V
a

r
ia

n
c
e

Snake 1

Snake 2

Figure 4. Variance of two snakes of the graph of links.

In this case, we obtain a sparse similarity matrix. The snake similarity is defined
as follows: wij =

1
∑L

l=1 lφl ∑L
l=1 φlcard(Ti[l] ∩ Tj[l]), i, j = 1, . . . , N.

wii = 0.
(3)

Note that:
L

∑
l=1

lφl =
φ(Lφ(L+1) − (L + 1)φL + 1)

(1− φ)2 ≈ φ

(1− φ)2 , (4)

where Ti[l] and Tj[l] are l-size snakes corresponding to starting links i and j, and card(Ti[l]∩
Tj[l]) is the number of common link identifiers between the two snakes of size l. The weight
coefficient φ is assigned by the user with 0 < φ ≤ 1. The snake similarity matrix algorithm
for the transportation network is given by Algorithm 1.

Algorithm 1 Snake Similarity Matrix Algorithm for the Transportation Network

Require: set Γ = {l1, . . . , lN} with N links (The same set Γ is used for both the links and the
snakes).

1: while Link li is in the set of links do
2: Add the link li to the snake Ti
3: while length(Ti) < L do
4: find the adjacent link A of the snake Ti, which has the closest variance to the

average value of previously added links in that snake using Equation (1).
5: Add this link A to the snake Ti.
6: end while
7: end while
8: while Snake Ti is in Γ do
9: while Snake Tj is in Γ do

10: Compute the similarity matrix wij based on Equation (3).
11: end while
12: end while

In order to prove the correctness of the algorithm, we consider a graph of links with a
certain number of homogeneous regions with different levels of congestion in the graph.
The links of one region have the same density or speed value. Each snake adds the adjacent
link with the closest speed value to the average speed values of the links in the snake.

Algorithms 2022, 15, 76 9 of 35

Snakes start from different links in each of these regions. They first integrate all the links in
that region and then start adding from other regions with different levels of congestion.

We can conclude, that after reaching this state, all the snakes within one component
will show the same behavior. Moreover, they have many common links during their
evolution before reaching the whole component. We use these features to define a similarity
matrix constituted by the number of common link identifiers between the pairs of snakes.
Snakes with different initial links have a robust trend inside each cluster and converge to
the same state before adding links from other clusters.

By running the snake algorithm through the graph from different links, the homoge-
neous regions are identified. The homogeneous regions in the graph refer to the set of links
in which all snakes—starting from any initial link in that component—will end having the
same links in that sequence [8]. Figure 5 shows a snake computed on the network of the
sixth district of Paris.

Figure 5. Snake computed on the network of the sixth district of Paris. The number of links in the
snake is equal to 64.

2.3. Spectral Clustering

In graph theory, there are many clustering algorithms that assign objects into clusters
with respect to their pairwise similarity measure. The success of spectral clustering is
based on the fact that it does not make any assumptions about the data structure. Spectral
clustering can handle complex and unknown cluster shapes; in these cases, the commonly
used methods, such as K-means or mixture models, may fail.

The idea of spectral clustering is to cluster based on the eigenvectors of a similarity
matrix W defined on the set of nodes of a graph G(V, E) in which V = {v1, . . . , vN} ∈ RN

is the set of nodes, N is the number of nodes in the network, and E is the set of edges. The
goal is to bring similar nodes to the same cluster, thus, identifying the set of nodes that
share similar characteristics. Thus, to partition the graph appropriately, one can minimize
the objective function, which can be of the normalized cut type.

For a set of clustering results C = {C1, . . . , CK} such that V = ∪K
k=1Ck, and Ci ∩ Cj =

∅ for i 6= j; the normalized cut is formulated as follows [26]:

NC =
K

∑
k=1

cut(Ck, Ck)

cut(Ck, V)
, (5)

where K is the number of clusters, Ck ⊂ V is defined as the complementary set of Ck. The
cut-weight between two subsets Ck and Ck is defined as:

cut(Ck, Ck) = ∑
vi∈Ck

∑
vj∈Ck

wij. (6)

A partition can be expressed as an N-by-K cluster indicator matrix Z whose elements
are in {0, 1}, with Z(i, j) = 1 if and only if node i belongs to cluster j. Let W denote the

Algorithms 2022, 15, 76 10 of 35

graph similarity matrix and D the diagonal degree matrix with D(i, j) = ∑N
j=1 wij. The

normalized cut can be equivalently written as:

NC = K− Tr
⌈

XT
(

D−1/2WD−1/2
)

X
]
, (7)

where X ∈ RN×K is the relaxed continuous-value of Z with XTX = IK. This problem can be
converted to a trace maximization, where a solution is the matrix Xt whose columns are the
K-eigenvectors associated with the top K-eigenvalues of the Laplacian matrix defined by:

Lp = D−1/2WD−1/2. (8)

In our work, we compute X for each time period t and we project the data points
into span(X), which is the subspace spanned by the columns of X, and then we apply the
K-means algorithm to the projected data in order to obtain the clustering results.

2.4. Evolutionary Spectral Clustering

Spectral clustering approaches are usually static algorithms and, hence, need to be
adapted to be applied to dynamic evolving traffic. Indeed, the current clusters should
depend on the current data traffic features without deviating too dramatically from previous
histories [18]. For this reason, we propose two frameworks of the evolutionary spectral
clustering for the partitioning of dynamic transportation networks, which are the preserving
cluster quality (PCQ) and the preserving cluster membership (PCM). In both frameworks,
the total cost function is defined as a linear combination of the snapshot cost (SC) and the
temporal cost (TC):

TotalCost = α SC + (1− α) TC, (9)

where 0 ≤ α ≤ 1 is a parameter assigned by the user, which reflects the user’s emphasis on
the snapshot cost and the temporal cost. In the upcoming experiments, we choose α = 0.6
in order to place more emphasis on the snapshot cost while considering, at the same time,
the temporal cost. The snapshot cost (SC), which is expressed in the same way for the two
frameworks, measures the snapshot quality of the current clustering result with respect to
the current data features, whereas the temporal cost (TC) is expressed differently.

In the preserving cluster quality (PCQ) framework, the temporal cost (TC) measures
the goodness of fit of the current clustering result with respect to historic data, while in the
the preserving cluster membership (PCM) framework, the temporal cost (TC) is expressed
as the difference between the current partition and the historic one.

2.4.1. Preserving Cluster Quality (PCQ)

In the context of spectral clustering, we consider two partitions, Zt and Z′t, which are
the results of clustering the transport network at a time period t. We assume that the two
partitions give similar performance at time period t, but in the case of clustering historic
data, the clustering performance using partition Zt is preferred because it is more consistent
with historic data. In this case, the evolutionary normalized cut’s total cost can be expressed
as follows [18]:

TotalCost = α NCt|Zt + (1− α) NC(t−1)|Zt , (10)

where |Zt means evaluated by the partition Zt. For a given partition, the normalized cut
can be written following Equation 7. After some manipulation, we obtain the following
total cost:

TotalCost = K− Tr
⌈

XT
t

(
α D−1/2

t WtD−1/2
t + (1− α) D−1/2

t−1 Wt−1D−1/2
t−1

)
Xt

]
. (11)

The PCQ framework consists of finding the optimal solution that minimizes the total
cost. This problem can be converted to a trace maximization problem, where a solution is
the matrix Xt whose columns are the K-eigenvectors associated with the top K-eigenvalues

Algorithms 2022, 15, 76 11 of 35

of the evolutionary Laplacian matrix defined by the combination of both normalized
similarity matrices at time period t and (t− 1) [18]:

Lpcq = α (D−1/2
t WtD−1/2

t) + (1− α) (D−1/2
t−1 Wt−1D−1/2

t−1). (12)

This equation is used in two consecutive times t and t− 1. After obtaining Xt at time
period t, we can project data points into span(Xt) and then apply the K-means clustering
algorithm to obtain the final clusters.

2.4.2. Preserving Cluster Membership (PCM)

Consider that two partitions, Zt and Z′t, cluster the data at time period t equally well.
However, when compared with the historic partition Z(t−1), Zt is preferred because it is
more consistent with the historic partition. This idea is formalized by [18]:

TotalCost = α NCt|Zt + (1− α) TC, (13)

where NCt|Zt is the snapshot cost. The temporal cost TC is expressed as the difference
between the clustering result at time period t and the clustering result at time period (t− 1).
One solution is the norm of the difference between the two projection matrices, which is
expressed as:

TC =
1
2

∥∥∥XtXT
t − Xt−1XT

t−1

∥∥∥2
, (14)

where Xt and Xt−1 are the sets of top K-eigenvectors at time period t and t− 1, respectively.
In this case, the evolutionary total cost can be expressed by:

TotalCost = α K− α Tr
⌈

XT
t

(
D−1/2

t WtD−1/2
t

)
Xt

]
+

(1− α)

2

∥∥∥XtXT
t − Xt−1XT

t−1

∥∥∥2

= K− Tr
⌈

XT
t

(
α D−1/2

t WtD−1/2
t + (1− α) Xt−1XT

t−1

)
Xt

]
.

(15)

The PCM framework consists of finding the optimal solution that minimizes the total
cost. This problem can be converted to a trace maximization, where the solution is the
matrix Xt whose columns are the top K-eigenvectors associated with the top K-eigenvalues
of the evolutionary Laplacian matrix [18]:

Lpcm = α (D−1/2
t WtD−1/2

t) + (1− α) (Xt−1XT
t−1). (16)

The final clusters can be attained by projecting data into span(Xt) and then applying
the K-means algorithm to obtain the final clusters. The two proposed frameworks can
handle any variations in the number of clusters.

In the PCQ framework, the temporal cost is only expressed by historic data, not by
historic clusters, and therefore the computation at the current time is independent of the
number of clusters at the previous time. Moreover, the PCM framework can be used
without change when the partitions have a different number of clusters.

In comparing the Laplacian graphs of both frameworks, we can see that they differ
in terms of how they measure the historic partition. Lpcq and Lpcm have in common the
first term, which refers to the current data expressed by the symmetric Laplacian at time t.
The difference between these two is found in the second term. For the PCQ framework,
it is equal to the symmetric Laplacian at time t− 1, whereas for the PCM framework, it
is expressed by the set of eigenvectors Xt−1XT

t−1 at time t− 1. The evolutionary spectral
clustering algorithm for the transportation network is given by Algorithm 2.

Algorithms 2022, 15, 76 12 of 35

Algorithm 2 Evolutionary Spectral Clustering Algorithm

Require: Similarity matrix W ∈ RN∗N , Number of K− clusters to construct.
1: Compute the degree matrix D(i, i) = di for all 1 ≤ i ≤ N.
2: Compute the Laplacian L matrix for PCQ or PCM using Equations (16) or (12).
3: Solve the the eigen equation Lu = λu.
4: Find the K top eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λK and their corresponding eigenvectors

u1, · · · , uK of L.
5: Compute U ∈ RN∗K as a matrix containing the vectors u1, · · · , uK as columns.
6: Create the Matrix U

′
in RN∗K from U by normalizing the rows by the norm 1.

7: for i=1,...,N do
8: let yi ∈ RK be the normalizing vector corresponding to the ith row of U

′
.

9: end for
10: Cluster the data points (yi)i=1,··· ,N in RK with the K-means algorithm to obtain clusters

C1, .., CK.

We explain the steps of the evolutionary spectral clustering algorithm by considering
the following example. Figure 6 shows two graphs at time periods t − 1 and t. In this
example, we choose a number of classes equal to two for the two periods.

5 5

5 5

5

x4 x5

x3 x1

x2

5 5

5 5

5

x4 x5

x3 x1

x2

Partition 1 Partition 3

Period = t - 1 Period = t

5

3

4

7

6

6
2

2

Figure 6. Two graphs at time periods t− 1 and t.

The similarity matrices of the two graphs are defined as follows:

Wt−1 =

X1 X2 X3 X4 X5
X1 0 7 4 0 0
X2 7 0 3 0 0
X3 4 3 0 0 0
X4 0 0 0 0 5
X5 0 0 0 5 0

 (17)

Wt =

X1 X2 X3 X4 X5
X1 0 6 0 0 0
X2 6 0 2 0 0
X3 0 2 0 2 0
X4 0 0 2 0 6
X5 0 0 0 6 0

 (18)

It is clear that the graph at time period t-1 should be clustered by partition 1 when
we apply the evolutionary spectral clustering algorithm. In order to partition the graph at

Algorithms 2022, 15, 76 13 of 35

time period t, we run the evolutionary spectral clustering algorithm by applying the PCQ
framework. We obtain the following Laplacian matrix:

Lpcq =

0 0.7866 0.1823 0 0

0.7866 0 0.3556 0 0
0.1823 0.3556 0 0.2121 0

0 0 0.2121 0 0.9196
0 0 0 0.9196 0

 (19)

Next, we solve the the eigen problem. We obtain the eigenvector matrix as follows:

U =

0.4340 0.4672
0.4683 0.4850
0.3533 0.1720
0.5026 −0.4981
0.4635 −0.5184

 (20)

Since the values of U are in the interval [0, 1], then we choose U
′

equal to U. Next,
we compute yi as the ith row of U

′
. Finally, we apply the K-means algorithm to the data

points (yi)i=1,··· ,N and we obtain the two clusters of partition 3: C1 = [X1, X2, X3] and
C2 = [X4, X5]. It is shown that both partition 2 and partition 3 are good for time period t;
however, partition 3 should be preferred because it is more consistent with partition 1 at
time period t− 1.

2.5. Efficient Evolutionary Spectral Clustering Algorithm

A major issue of the evolutionary spectral clustering algorithm is its computational
and memory cost. If we denote by N the number of the data snakes at a given time, solving
the eigenvalue problem has a complexity O(N3) and the N × N evolutionary Laplacian
does not fit into the main memory when N is large. To solve this problem, we define the
following eigenvalue problem involving the smoothed Laplacian as follows [27]:

Lt gl,t = λl,tgl,t, (21)

where
Lt = D−

1
2

t WtD
− 1

2
t . (22)

This similarity matrix for PCQ is defined as:

Wt = αWt + βWt−1 + ... + βt−1W1. (23)

Notice that, in contrast to evolutionary spectral clustering, we consider all the previous
time steps before the actual time point using an iterative process because of the low
computation of the efficient evolutionary spectral clustering algorithm. However, the
computation of the similarity matrix for PCM is not adopted for the efficient evolutionary
spectral clustering algorithm. Thus, in the objective to make a comparative study with the
PCM framework, we propose a similarity matrix for PCM defined as follows:

Wt = αWt + D
1
2
t (βXT

t−1Xt−1 + ... + βt−1XT
1 X1)D

1
2
t . (24)

The second term of the equation is multiplied by D
1
2
t in order to reduce the term D−

1
2

t
to the identity matrix when the smoothed Laplacian is computed. To achieve the reduction
of the eigenvalue problem, the similarity matrix Wt is replaced with its incomplete Cholesky
decomposition (ICD) [28].

An ICD of a matrix Wt ∈ RN×N allows us to compute a low-rank approximation of
accuracy τ of N× N matrix Wt, where ||Wt − PPT || < τ with P ∈ RN×m, such that m� N.

Algorithms 2022, 15, 76 14 of 35

The value of m is computed by the incomplete Cholesky decomposition algorithm [28]. The
ICD selects the rows and columns of Wt, which are called pivots considering that the ranks
of approximation are close to the rank of the original matrix. The first step in solving the
problem with efficient evolutionary spectral clustering is to reduce the eigenvalue problem

of both PCQ and PCM. Thus, we obtain Lt ' D−
1
2

t PPT D−
1
2

t . After that, we replace D−
1
2

t P
with its QR factorization and substitute R with its singular value decomposition. As a
result, we will obtain the following equation:

Lt ' QUR(Σ2
R)U

T
RQT , (25)

where Q ∈ RN×m and R ∈ Rm×m such that R = URΣRVT
R and UR,ΣR, VR ∈ Rm×m. We

have to solve an eigenvalue problem of size m×m, involving the matrix RRT that is smaller
than the size N × N of the original problem.

In addition, the eigenvectors problem can be estimated as gl = QUR,l , where the
related eigenvalues are λl = σ2

R,l . At last, the cluster assignment for the ith data points are
obtained from the pivoted LQ factorization of matrix G = [g1, ..., gK]:

Ci = argmaxl=1,..,K(|Xil |) where X = YLQG, (26)

such that Y ∈ RN×N is a permutation matrix as defined in [27], L ∈ RN×K is a lower
triangular matrix, and QG ∈ RK×K is the unitary matrix.

The classic ICD algorithm is based on the supposition that the Laplacian matrix has a
small rank. A new stopping criterion assumes that the cluster assignments tend to converge
after selecting each pivot. Therefore, for the cluster assignments Cs at step s and Cs−1 atstep
s− 1

(
with Cs =

[
Cs

1, . . . , Cs
N
])

, the normalized mutual information (NMI) is calculated.
The time step s is used for an iterative process of the algorithm. The NMI is defined by [29]:

NMI(Cs, Cs−1) =
MI(Cs, Cs−1)√
H(Cs)H(Cs−1)

, (27)

where the mutual information between the partitions Cs and Cs−1 is defined as:

MI(Cs, Cs−1) =
K

∑
i=1

K′

∑
l=1

nil
N

log

(
nil N

|Cs
i |C

s−1
l |

)
, (28)

The term nil represents the number of shared patterns between the clusters Cs
i and

Cs−1
l , and K′ is the number of clusters in partition Cs−1. The entropy of the partition Cs is

defined as:

H(Cs) = −
K

∑
i=1

|Cs
i |

N
log
(|Cs

i |
N

)
. (29)

A higher NMI value means that the clustering algorithms generate identical partitions.
The NMI value is bounded in (0,1), equaling 1 when the two partitions are identical
and 0 when they are independent. Consequently, the ICD algorithm terminates when
|NMI − 1| < THR, where THR is a user-defined threshold value.

To make this procedure faster, we need to check the convergence of the cluster assign-
ments only when the approximation of the similarity matrix is good enough. Thus, we stop
the computation when the quality of the approximation of the similarity matrix is greater
than a predefined threshold as follows:

min(d̃)/ max(d̃) > THRdeg, (30)

where
d̃ = PPT1N . (31)

Algorithms 2022, 15, 76 15 of 35

Finally, to prevent the termination of the ICD algorithm too early with the poor and
insufficient performance of clusters, we choose THRdeg = THR = 10−6, which is a suitable
choice through experiences. As a result, this criterion decreases the number of selected
pivots and improves the computational complexity. This methodology outperforms the
evolutionary spectral clustering and the normalized spectral clustering algorithm that is
denoted by IND, which independently applies the spectral clustering algorithm on the
speed of road segments in only the time step t and ignores all the historic data before t.

It is shown that the computational complexity of the efficient evolutionary spectral
clustering algorithm is O(N) [27]. On the other hand, the methods of the evolutionary
spectral clustering have a complexity of O(N3) as a result of the fully eigen decomposition
of the N×N similarity matrices that are included at each time t. Consequently, this method
is an effective tool for dealing with large-scale clustering problems with a time complexity
of O(N). The efficient evolutionary spectral clustering algorithm for the transportation
network is given by Algorithm 3.

Algorithm 3 Efficient Evolutionary Spectral Clustering Algorithm for Transportation Networks

Require: Similarity matrices {Wt}T
t=1 ∈ RNt×Nt

, thresholds THR and THRdeg .
1: for t=2,...,T do
2: Compute the matrix Wt (Equations (23) and (24)), initialize the matrix P to zero and

the matrices C0 and Y to one.
3: Compute the number of clusters using density peaks.
4: while |NMIs − 1| < THR do
5: Start incomplete Cholesky decomposition and update the matrices Y, P and

Wt [27,28].
6: Compute d̃ using Equation (31).

7: Compute rdeg = min(d̃)
max(d̂)

.

8: if rdeg > THRdeg then

9: Calculate the QR decomposition of D̃−
1
2 P.

10: Evaluate the singular value decomposition of R = UΣVT .
11: Obtain the approximated eigenvectors through Ĝ = QUR,1:max k.
12: Evaluate LQ factorization with row pivoting as DĜĜ = YLQĜ.
13: Compute cluster assignment for a data snake (Equation (26)).
14: Save the current assignments for the N data snakes in a vector Cs.
15: Calculate NMIs = NMI

(
Cs−1, Cs) according to the Equation (27).

16: end if
17: end while
18: end for

3. Automatically Choosing the Number of Clusters

The spectral clustering method requires knowing the number of clusters in the graph.
However, in any transport network, it is difficult to know this number a priori. In order to
determine the appropriate number of clusters, we introduce a novel version of the density
peaks algorithm, the modularity method and the eigengap heuristic, and we compare these
methods in our experiments in order to choose the appropriate method.

3.1. Density Peaks Algorithm

The density peaks algorithm, which can detect non-convex clusters, is based on two
assumptions. The first one is that the cluster centers are surrounded by neighbors with
lower local density. The second assumption is the clusters’ centers are at a relatively large
distance from any snake with a higher local density. The density peaks algorithm uses
three important variables: The local density ρi for each snake Ti in the whole data set, the
minimum distance δi among snake Ti and other snakes that have higher density [30] and
the parameter γi = ρiδi, which is the product of ρi and δi for each snake Ti. Then, we
choose the snakes with the largest γi values as centers.

Algorithms 2022, 15, 76 16 of 35

We compute the local density ρi and the minimum distance δi from snakes with higher
density to represent the two quantities of any snake Ti. For each snake Ti in the whole data
set of snakes Γ, the local density ρi is defined as follows:

ρi = ∑
Tj∈Γ,Tj 6=Ti

χ
(
d(Ti, Tj)− dc

)
, (32)

with χ(x) =
{

1 if x < 0
0 otherwise

}
,

where dc is a cutoff distance, χ(x) is a kernel function, and d(Ti, Tj) is the distance among
snakes Ti and Tj. For each snake Ti, these quantities are dependent on the distance d(Ti, Tj)
among two snakes Ti and Tj. In this paper, we adopted the following distance between two
snakes based on the sparse snake similarity matrix as follows:

d(Ti, Tj) = 1− e
−1

ηWij . (33)

The parameter η controls the marginal impact of the authentication in the case of
additional similarities taking place among snakes. We choose, in our case η = 3, to obtain
the densely distributed snakes in space. In fact, ρi is the number of snakes that are too
similar to a snake Ti. On the other hand, calculating the local density using the Gaussian
function can avoid having the same density values for the snakes. The results are greatly
influenced by the cutoff distance dc. The local density is computed as follows:

ρi = ∑
Tj ,Tj∈Γ,Tj 6=Ti

e
−

d(Ti ,Tj)
2

d2
c . (34)

The δi is the minimum distance from snake Ti to the higher-density snakes and is
defined as follows:

δi =

{
max{d(Ti, Tj)|Tj ∈ Γ} if ∀Tj ∈ Γ, ρi ≥ ρj
min

{
d(Ti, Tj)|ρi < ρj, Tj ∈ Γ

}
otherwise .

(35)

If there is one snake with the largest density, it makes a compromise with δi, defined
as the maximal distance from itself to other snakes, which enables it to have the largest δi
value again.

In order to select the centers, we calculate, for each snake, Ti the parameter γi = ρiδi
with the largest values. We select the K snakes that have the largest values of γi, such that
K is the number of classes. To see whether a distance is relatively large, we should make a
comparison of it with another one, so that we can model a comparison with a new quantity
for δi and the distance between a snake Ti and its nearest neighbor with a lower density,
denoted by τi [30]:

τi =

{
δi if ∀Tj ∈ Γ, ρi ≤ ρj
min

{
d(Ti, Tj)|ρi > ρj, Tj ∈ Γ

}
otherwise.

(36)

The parameter τi shows the distance from the snake Ti to the area with lower density.
It shows how far away the snake i is from the area with lower density, which is a suitable
quantity for δi to compare with. Consider the quantity θi defined as the difference between
δi and τi:

θi = δi − τi for Ti = T1, . . . , TN . (37)

The comparative magnitude of θi must be revealed to find the potential cluster centers.
Moreover, the distance between a snake Ti and another one with a higher density is greater
than to a snake with a lower density if the δi � τi. It is known that the area of low density
is closer than the area of high density to a snake Ti surrounded with a lower density. On

Algorithms 2022, 15, 76 17 of 35

the other hand, the snakes that have the higher density are relatively distant. Consequently,
the quantity θi denotes the relative magnitude of δi. We substitute δi by θi in the decision
graph and set γi = ρi ∗ θi. Thus, the center points with high γi values will pop-out in the
decision graph.

The mutual K-nearest-neighbor graph is used in order to compute the density measure
for all snakes [31]. The mutual K-nearest-neighbor graph (mKNN graph) is defined as an
un-directed graph where there is an edge that connects both snakes Ti and Tj only if one
of them belongs to the K-nearest neighbors of the other. Regarding the original definition
of the density measure, the new density measure is influenced through both the cutoff
distance dc and each distance d(Ti, Tj) between two points Ti and Tj. The new density
measure is defined as follows:

ρi = ∑
Tj∈NKTi

e
−(

d(Ti ,Tj)
2

d2
c

)
, (38)

where NKTi is the set of connected snakes in the mKNN graph for each snake Ti. The
mKNN graph provides a clear direction if a snake must be revealed in the calculation of
ρi. The minimum distance δi from snake Ti to the higher-density snake is still the same
as the original definition that is defined in Equation (35). In order to find the number of
class centers, we can plot, for each snake, the γi = ρi ∗ θi to detect the centers and select the
cluster centers using the following formula:

γi = ρi ∗ θi > TH, (39)

such that the threshold TH is a parameter selected by the user. However, this method
cannot determine the TH parameter for different data sets. In this paper, this problem is
solved with a statistic-based approach to identify the cluster centers from the decision graph
automatically. This approach is based on the minimum distance θi to be much larger than
among the nearest neighbors’ distances only when the snake Ti has the maximum density.

This provides an important feature that specifies the cluster center using an outlier
detection that includes the probability density function in the decision graph at a particular
density ρi [32]. The outliers are specified by the following threshold THd:

THd(ρi) = µ(ρi) + 3× σ(ρi). (40)

The two parameters µ(ρi) and σ(ρi) are defined as follows:

µ(ρi) =
∑N

Tj=1,Tj 6=Ti
θj×e

− 1
2×
(ρj−ρi

a

)2

∑N
Tz=1,Tz 6=Ti

e
1
2×
(

ρz−ρi
a

)2 , (41)

σ2(ρi) =
∑N

Tj=1,Tj 6=Ti

[
b2+(θj−µy(ρi))

2]×e
1
2×
(ρj−ρi

a

)2

∑N
Tz=1,Tz 6=Ti

e
− 1

2×
(

ρz−ρi
a

)2 , (42)

where a and b are the two-dimensional kernel widths. They are defined as follows:

a = α0 × σρi 0 < α < 1
b = β0 × σθi 0 < β < 1,

(43)

where σρi and σθi are the standard deviations of ρi and θi for all the snakes. The two
parameters α0 and β0 are user-defined parameters used to identify the cluster center and
compute the TH value. We specify a snake Ti as a class center when the minimum distance
θi > THd(ρi). However, the performance of the density peaks algorithm depends on the-off

Algorithms 2022, 15, 76 18 of 35

distance dc. To avoid this limitation, the value of dc is automatically extracted from the set
of snakes Γ by minimizing a potential entropy defined as follows [33]:

H = −
N

∑
i=1

ρi
z

log(
ρi
z
), (44)

where z = ∑N
i=1 ρi is a normalization factor. The density peaks algorithm for the transporta-

tion network is given by Algorithm 4.

Algorithm 4 Density Peaks for Detecting the Number of Partitions in a Transportation
Network
Require: A set Γ = {T1, . . . , TN} with N Snakes.

1: Construct the mutual K-nearest-neighbor graph.
2: while Snake Ti is in Γ do
3: Compute ρi using Equations (38) and (44)
4: end while
5: while Snake Ti is in Γ do
6: Compute the distance δi with respect to Equation (35).
7: Compute the value τi according to the Equation (36).
8: Compute the quantity of θi = δi − τi according to Equation (37).
9: end while

10: Construct the decision graph according to the values of ρ and θ (Equations (38) and (37))

11: Identify the cluster centers from the decision graph automatically using the probability
density function in the decision graph (Equation (40)).

3.2. Eigengap Heuristic

This method consists of finding the number of Laplacian eigenvalues such that the
first k eigenvalues λ1, . . . , λk are small, and λk+1 is relatively high [25]. This means that
one should sort the eigenvalues in descending order, because it is a trace maximization
problem, and find a gap in these values. We define the gap as the maximum difference
between two successive eigenvalues as:

gap(k) = |λk − λk+1|, k = 1 . . . , Kmax (45)

where Kmax is the maximum number of clusters. The value of the eigengap for subsequent
eigenvalues will indicate where the number of clusters should be selected. The number of
clusters K is given by:

K = argmax(gap(k)). (46)

However, if the distribution of the eigenvalues is uniform, the determined K is not
always relevant.

3.3. Modularity

Modularity is one measure of the graph structure. It is designed to measure the
strength of the division of a graph into clusters. The networks with high modularity have
dense connections between nodes within the same cluster but sparse connections between
nodes in different clusters. We calculate the modularity versus the number of clusters or
groups. The optimum number of clusters is the one that maximizes modularity [34,35].

Given a graph G = (V, E) and a partition of the nodes V into K clusters C =
{C1, . . . , CK}, the modularity is expressed as follows [34]:

M =
K

∑
k=1

1
|Ck|

(
Cut(Ck, Ck)

Cut(V, V)
−
(

Cut(Ck, V)

Cut(V, V)

)2
)

, (47)

Algorithms 2022, 15, 76 19 of 35

where |Ck| is the size of cluster Ck. The term Cut(Ck, Ck) measures the sum of weights
within the cluster and Cut(Ck, V) measures the sum of weights over all edges attached to
nodes in cluster Ck. The term Cut(V, V) calculates the total sum of all edge weights in the
graph G.

We compute the modularity for each value of K, such as K ≤ Kmax. In order to select
the number of clusters, we choose the number K that maximizes the modularity function. A
high value of the modularity function means that the edges within the clusters outnumber
those in a similar randomly generated graph. Modularity is often used in optimization
methods for detecting homogeneous cluster structures in networks.

4. Experimental Results

In this section, we analyze experimental data processed in [17] to show the per-
formance and effectiveness of the proposed method on a network of links. Next, we
automatically detect the number of clusters, and we present a comparative study between
the static spectral clustering and the efficient evolutionary spectral clustering frameworks.

4.1. Transportation Network

The real data were collected from Amsterdam city, and the original mapping of the
inner-city network included 7512 roads [17]. The Amsterdam network of roads has been
reduced to 208 roads as illustrated in Figure 7. The present study concentrates only on one
day of data, which is a weekday, and the road speeds are estimated from the individual
travel times. Moreover, the average speed information is available every time period of
10 min from 7 a.m. to 3 p.m. for the 208 roads. The day has a total of 48 periods, and the
maximum speed of the road is 40 m/s.

Figure 7. Amsterdam reduced network with 208 roads [24].

4.2. Snake Length and Weight Coefficient Optimization

One of the main drawbacks of snake similarity is its heavy computational cost. A
sensitivity analysis is conducted to investigate the performance of snakes for different
lengths [17]. The snake length has to be set at a minimal threshold to keep the connectivity.
Thus, a snake that is too short cannot discover the entire topology of the network in
both space and time. A short snake length may also provide cluster results in which a
cluster contains links that are not all connected with each other. The connected clusters’
dissimilarity (CCD) is used to evaluate the performance of the algorithm for different
snake lengths and weight coefficient values. The CCD metric focuses on the inter-cluster
dissimilarity between a given cluster and its neighboring cluster. It is defined by [17]:

CCD =
∑K

i=1 ∑K
k=1+i δik|νi − νk|

∑K
i=1 ∑K

k=1+i δik
, (48)

Algorithms 2022, 15, 76 20 of 35

where νi is the mean speed of the cluster i, δik = 1 if i and k are the indices of connected
clusters and δik = 0 otherwise. This evaluation metric is to be maximized. The mean
values of CCD for the 48 periods are computed using different snake lengths based on the
percentage of the spatio-temporal size of the network roads (Figure 8). It is clear that the
algorithm produces similar results for snake lengths bigger than 40% of the spatio-temporal
size of the network of roads. Therefore, the length of the snake is set to 40%, and the weight
coefficient φ is selected to be equal to 0.7 in order to obtain the maximum mean values of
CCD (Figure 9).

2.185

2.19

2.195

2.2

2.205

2.21

2.215

2.22

2.225

2.23

30% 40% 50% 60%

C
C

D

Snake length

Maximum value of mean CCD = 2.23
for snake length = 40% of the network

Figure 8. The mean values of connected clusters’ dissimilarity versus snake length computed as a
percentage of the size of the network of roads.

0

0.5

1

1.5

2

2.5

0.6 0.7 0.8 0.9

C
C

D

Ø

Maximum mean CCD = 2.23
for the 48 time periods

Figure 9. The mean values of connected clusters’ dissimilarity versus the weight coefficient φ.

4.3. Comparative Study for the Automatic Selection of the Number of Clusters

Choosing the optimal number of clusters is usually a tricky problem for all clustering
algorithms. In our previous work, we considered only two clusters in order to differentiate
between congested and fluid zones [19]. However, selecting a fixed number of clusters for
all periods causes a strong restriction. In this section, we present a comparative study be-

Algorithms 2022, 15, 76 21 of 35

tween the density peak, the eigengap [25] and the modularity [12] methods to automatically
detect the number of clusters.

In the case of the density peak, we choose the cut-off distance that minimizes the
potential entropy of data for all time periods, we compute the local density ρi and the
parameter θi, and we identify the cluster centers by calculating the probability density
function and choosing the appropriate threshold by selecting the values of α0 and β0 based
on [32] (Figure 10).

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Threshold

Points

Centroid

-1

Figure 10. Decision graph for the time period t = 6 using the density peak algorithm and the
probability density function.

The clustering results are analyzed in the case of spectral clustering using the density
peaks, the modularity and the eigengap for the automatic selection of the number of clusters.
We consider the time period t = 6 in order to test the three methods on a different number of
clusters. We plot the results of the clustering of Amsterdam road networks (Figure 11), and
we compute the average speed and the standard deviation in each cluster for time period
t = 6 (Table 1). It is shown that the obtained clusters have small standard deviation values,
which proves a promising performance in separating homogeneous connected clusters.
Moreover, the density peak algorithm is better in the partitioning of the transportation
network into homogeneous partitions with separated average speed.

a)Density Peak P6 b)Modularity P6 c)Eigengap P6

Figure 11. Clustering results for the time period t = 6 in the case of the density peak (a), modularity
(b) and eigengap (c).

Algorithms 2022, 15, 76 22 of 35

Table 1. Average speed values (m/s) over standard deviation (average speed/standard deviation)
for a time period t = 6 with number of clusters K = 4 in the case of density peaks, K = 6 in the case
of the modularity method and K = 7 in the case of eigengap.

Cluster Red Green Blue Magenta Cyan Yellow Orange

Density Peaks 6.03
0.79

7.17
0.74

9.98
2.86

10.03
3.63 n.a. n.a. n.a.

Modularity 6.03
0.79

7.17
0.74

7.98
1.20

9.98
2.86

10.72
4.40

13.72
3.06 n.a.

Eigengap 6.03
0.79

7.17
0.74

7.53
0.67

7.98
1.20

10.72
4.40

11.6
2.58

13.72
3.06

The results of the clustering method with the histogram of speeds for the density peak,
the modularity and the eigengap methods are shown in Figures 12–14. It can be inferred
from the clustering results that the density peak algorithm can separate the pockets of
congestion better than the modularity and the eigengap methods. It is clear that, in the case
of density peaks, the network has two main pockets of congestion, the cluster with small
average speed represented by the red color and the cluster with a higher average speed
represented by the Magenta color. The other two clusters detect part of the highway with
medium average speed.

Figure 15 shows the number of clusters obtained by applying the density peak, the
modularity and the eigengap methods for each time period. We find that the number of
clusters obtained by the density peaks algorithm is smaller than that of the modularity
and the eigengap methods. Therefore, considering a smaller number of clusters makes the
interpretation easier and helps to design more efficient control strategies [7].

Next, we run the IND, PCQ and PCM using the efficient spectral clustering algorithm
with the density peak, the modularity and the eigengap for selecting the number of clusters.
We report all costs in Table 2, where the best results are in bold face.

0 5 10 15 20 25 30

Speed (m/s)

0

5

10

15

20

25

30

35

N
u

m
b

e
r

o
f

R
o

a
d

s

Red

Green

Blue

Magenta

Figure 12. Histogram of link speeds for the time period = 6 in the case of the density peak.

Algorithms 2022, 15, 76 23 of 35

0 5 10 15 20 25 30

Speed (m/s)

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f
R

o
a
d
s

Red

Green

Blue

Magenta

Cyan

yellow

Figure 13. Histogram of link speeds for the time period = 6 in the case of the modularity.

0 5 10 15 20 25 30

Speed (m/s)

0

5

10

15

20

25

30

N
u

m
b

e
r

o
f

R
o

a
d

s

Red

Green

Blue

Magenta

Cyan

yellow

Orange

Figure 14. Histogram of link speeds for the time period = 6 in the case of the eigengap.

Table 2. Performance under the density peak, the modularity and the eigengap algorithms.

IND PCQ PCM

Modularity
SC 0.28 0.29 0.30
TC 0.67 0.34 0.42

Total Cost 0.44 0.31 0.35

Eigengap
SC 0.24 0.25 0.28
TC 0.60 0.30 0.31

Total Cost 0.38 0.27 0.29

Density Peak
SC 0.11 0.08 0.10
TC 0.25 0.10 0.12

Total Cost 0.17 0.09 0.11

Algorithms 2022, 15, 76 24 of 35

0 2 4 6 8 10 12 14 16 18 20 22 24

Periods

0

2

4

6

8

10

12

N
u
m

b
e
r

o
f
c
lu

s
te

rs

Density Peak

Modularity

Eigengap

Figure 15. The number of clusters obtained by applying the density peak, the modularity and the
eigengap methods for each time period.

It is clear that the density peak algorithm gives the best results in minimizing the cost
measures. For each time period, Figure 16 shows the variation of the total cost for the PCQ
framework in the case of the density peaks, the modularity and the eigengap methods.

0 5 10 15 20 25 30 35 40 45 50

Periods

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
o

ta
l
C

o
s
t

Density Peak

Modularity

Eigengap

Figure 16. Variation of the total cost for the PCQ framework using the density peak, the modularity
and the eigengap methods. The total cost function is defined as a linear combination of the snapshot
cost (SC) and the temporal cost (TC).

We did not plot the results for PCM, which were similar to those of PCQ. It is shown
that the density peak, the eigengap and the modularity methods partition the transportation
network equally well. However, according to temporal smoothness, the density peak
method should be preferred because it is more consistent with the recent history and gives
the minimum total cost for PCQ and PCM.

Algorithms 2022, 15, 76 25 of 35

4.4. Comparative Study between the Spectral Clustering Algorithms

In our experiments, we compared the efficient evolutionary spectral clustering frame-
works with the normalized efficient spectral clustering algorithm, which we named IND [36].
The IND method applies partitioning on the snakes at current time period t and ignores
all historic data before the current time period. The number of clusters for the two effi-
cient evolutionary spectral clustering frameworks (PCQ and PCM) and the IND method is
automatically detected using the density peak method.

First, we compute the average link speeds and the standard deviation for time period
t = 6 with the objective of validating the effectiveness of the efficient evolutionary spectral
clustering frameworks in separating homogeneous connected clusters. The results of the
evaluation metrics are presented in detail in Table 3.

Table 3. Average speed values (m/s) over standard deviation (average speed/standard deviation)
for time period t = 6 in the case of the IND, PCQ and PCM frameworks.

Cluster Red Green Blue Magenta

IND 6.03/0.79 7.17/0.74 9.98/2.86 10.03/3.63
PCQ 7.25/1.38 9.52/4.05 10.03/2.86 13.72/3.06
PCM 7.05/1.32 9.44/2.82 10.02/3.81 13.72/3.06

By comparing the mean values of link speeds and the standard deviation in different
clusters, it is clear that the mean link speeds between the partitions are dissimilar for PCQ
and PCM because they give a good separation between partitions. Moreover, the small
value of the standard deviation for each cluster defines good intra-cluster homogeneity.

Next, we consider all time periods from t = 1 to t = 48, and we evaluate the total cost
values for all three methods. For all costs, a lower value means better results. Figure 17
shows the results of the total cost for the IND method and for both PCQ and PCM frame-
works. As can be seen, the PCQ and PCM are better at minimizing the total cost measure
over the IND method.

0 5 10 15 20 25 30 35 40 45 50

Periods

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
o

ta
l
C

o
s
t

PCQ

PCM

IND

Figure 17. Variation of the total cost for each time period in the case of time period = 10 min.

Algorithms 2022, 15, 76 26 of 35

We compare the average runtime in seconds for one period using the PCQ and the
PCM frameworks. The time is computed for the 48 periods, and we take the average time
using MATLAB on a PC with two Intel CPUs at 2.33 GHZ and eight gigabytes of RAM. It
is clear that the two frameworks of the new methodology induce a better performance in
computational time than does the evolutionary spectral algorithm (Figure 18).

In order to validate the performance and the smoothness of the evolutionary spectral
clustering frameworks in finding clusters that fit the current data while simultaneously
not deviating from previous history, in this experiment, we plot the partitioning results
of the Amsterdam network for the PCQ, PCM and IND methods. In order to match the
clusters between consecutive time-steps, we used the Kuhn–Munkres Hungarian algorithm,
which performs one-to-one cluster matching between consecutive partitioning based on
the number of common links between clusters [37,38].

PCQ PCM
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ti
m

e
[s

e
c
o

n
d

s
]

ESC

EESC

Figure 18. Comparing the average runtimes of the Evolutionary Spectral Clustering (ESC) and the
Efficient Evolutionary Spectral Clustering (EESC) algorithms for PCQ and PCM frameworks.

This algorithm, which is the most popular polynomial time algorithm for solving
classical assignment problems, allows us to follow the evolution of the clusters over
time. Figure 19 illustrates the partitioning results with the number of clusters detected
automatically by the density peak method. The analyzed time periods are from t = 2
to t = 5, which corresponds to day hours from 7:10–7:40 a.m, one of the peak times of
a weekday.

The bold color represents the links specifying the deviation from one cluster to another.
For time periods t = 2 to t = 5, we find that, for the IND method, the number of links in a
cluster changes rapidly. However, the PCM and PCQ frameworks are more stable when
compared to the historic data. It is shown that the PCQ and PCM frameworks assure the
best performance and give more stable and consistent cluster results compared with the
IND method.

Algorithms 2022, 15, 76 27 of 35

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

a) IND2

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

b) IND3

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

c) IND4

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

d) IND5

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

e) PCM2

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

f) PCM3

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

g) PCM4

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

h) PCM5

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

i) PCQ2

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

j) PCQ3

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

k) PCQ4

4.8 4.9 5

X

52.3

52.35

52.4

52.45

Y

l) PCQ5

Figure 19. Clustering results for time periods from t = 2 to t = 4 for the IND, PCM and PCQ methods in the case of time period = 10 min.

Algorithms 2022, 15, 76 28 of 35

Next, we set the time period to 20 min. We consider the neighborhood of a link in
both space and time, and we make a duplicate of the links at time period t− 1. In fact, we
consider the graph with link speeds at time period t and the graph with link speeds at time
period t− 1.

The length of the snake is set to 30%, and we choose φ = 0.7 in order to assure the
maximum mean values of CCD (Figures 20 and 21). Figure 22 shows the number of clusters
obtained by applying the density peak method for time periods t = 1 to t = 24.

2.72

2.725

2.73

2.735

2.74

2.745

2.75

20% 30% 40% 50%

C
C

D

Snake length

Maximum value of mean CCD = 2.75
for snake length = 30% of the network

Figure 20. The mean values of connected clusters’ dissimilarity versus snake length computed in the
percentage of the size of the network of roads in the case of time period = 20 min.

0

0.5

1

1.5

2

2.5

3

0.6 0.7 0.8 0.9

C
C

D

Ø

Maximum mean CCD = 2.75
for the 48 time periods

Figure 21. The mean values of connected clusters’ dissimilarity versus the weight coefficient φ in the
case of time period = 20 min.

Algorithms 2022, 15, 76 29 of 35

0 2 4 6 8 10 12 14 16 18 20 22 24

Periods

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

c
lu

s
te

rs

Figure 22. The number of clusters obtained by applying the density peak method for each time
period in the case of time period = 20 min.

Figure 23 shows the partitioning results for time periods t = 2 to t = 4. It is clear that
the PCQ framework gives more stable and consistent cluster results than the PCM and IND
methods.

Finally, we set the time period to one hour. We consider the neighborhood of a link
in both space and time, and we make a duplicate of the links at time period t + 1 and
t− 1. The length of the snake is set to 15% of the network size in order to minimize the
computation complexity, and we choose φ = 0.7.

Figure 24 shows the partitioning results for time periods t = 2 to t = 4. It is clear that,
for all experiments, the PCQ framework gives more stable and consistent cluster results
compared with the PCM and the IND methods. These experiments, based on real data
collected from Amsterdam city, demonstrate that, compared to traditional clustering meth-
ods, our efficient evolutionary spectral clustering algorithm has the advantage of finding
directional congestion within stable and consistent clusters, which allows us to design
real-time traffic control schemes—specifically, hierarchical perimeter control approaches to
alleviate or postpone congestion.

Algorithms 2022, 15, 76 30 of 35

20

5

Ti
m

e(
s)

52.4

40

a) IND P2

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

b) IND P3

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

c) IND P4

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

d) PCM P2

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

e) PCM P3

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

f) PCM P4

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

g) PCQ P2

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

h) PCQ P3

Y X

4.9
52.3 4.8

20

5

Ti
m

e(
s)

52.4

40

i) PCQ P4

Y X

4.9
52.3 4.8

Figure 23. Clustering results for time periods from t = 2 to t = 4 for the IND, PCM and PCQ methods in the case of time period = 20 min.

Algorithms 2022, 15, 76 31 of 35

Figure 24. Clustering results for time periods from t = 2 to t = 4 for the IND, PCM and PCQ methods in the case of a time period equal to one hour.

Algorithms 2022, 15, 76 32 of 35

5. Conclusions

The goal of our study was to partition a transportation network by incorporating
temporal smoothness in evolutionary spectral clustering. We presented two frameworks
for partitioning the network. In the first framework, the temporal cost is expressed as
how well the current partition clusters the historic variation of link speeds. The second
framework is different from the first regarding how the temporal smoothness is measured.
In this framework, the temporal cost is expressed as the difference between the current
partition and the historic one. In both frameworks, a cost function is defined in order to
regularize the temporal smoothness.

In order to determine the appropriate number of clusters, we used the density peak
algorithm, which we proved to be efficient when compared with the modularity and
the maximum eigengap methods. Experimental studies on the Amsterdam city network
demonstrated that the two efficient evolutionary spectral clustering frameworks provided
results that are stable and consistent in an environment where traffic can change over time.

In future work, we will address the following constraints and limitations. We will
consider the case where some sensors do not provide valid measurements for specific time
intervals. We will extend our efficient evolutionary spectral algorithm to be applied in the
case of missing speed data. We will also consider the case of the insertion and removal of
links in the network.

In a transportation network, a road can either be closed or opened. In this case, the
size of the similarity matrix can change between time periods. Moreover, we will work
on another promising application for the partitions computed by efficient evolutionary
spectral clustering, which is to predict future travel times using deep-learning algorithms.

6. Code and Data Availability Policies

Code are however available from the authors upon reasonable request and with permis-
sion of the LISIC Laboratory.The data related to this study are accessible using the following
link: https://doi.org/10.6084/m9.figshare.5198566 (accessed on 19 January 2022).

Author Contributions: Conceptualization, J.C. and I.C.; methodology, P.A.A. and J.C.; software,
P.A.A. and J.C.; validation, I.C. and C.L.; formal analysis, J.C. and I.C.; investigation, J.C. and C.L.;
data curation, C.L.; writing—original draft preparation, P.A.A.; writing—review and editing, J.C.
and I.C.; project administration, J.C.; funding acquisition, P.A.A. and C.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This project has received funding from the “Paprika IA Développement” company and
the project National Natural Science Foundation of China (71971014) named “Study on the Dynamic
Traffic Assignment Problem with Graphical Solution Method”. This project has also received funding
from the ERIC laboratory at the University of Lyon, Lyon 2, ERIC UR 3083, 5 avenue Pierre Mendès
France, F69676 Bron Cedex, France. This work was funded in part by the Université du Littoral Côte
d’Opale in France and the Agence Universitaire de la Francophonie with the National Council for
Scientific Research in Lebanon through a doctoral fellowship grant under ARCUS E2D2 project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: Each author certifies that this material or similar material has not been and will
not be submitted to or published in any other publication.

Glossary
The following abbreviations are used in this manuscript:

N Number of snakes
L Size of the snake
K Number of clusters

https://doi.org/10.6084/m9.figshare.5198566

Algorithms 2022, 15, 76 33 of 35

T Number of periods
Kmax Maximum number of clusters
Ω Network of links
I Set of intersections in the network of links
R Set of links in the network of links
V Set of nodes in the graph of links
E Set of links in the graph of links
G Graph of snakes
Γ Set of vertices in the graph of snakes
Ω Similarity between snakes
Ti Identifier for snake i
id Link identifier
ν Link speed
σl Variance of the snake at each step l
νl Mean speed of the snake at each step l
wij Element of the similarity matrix
φ Weight coefficient
C Set of clustering results
NC Normalized cut variable
Lp Laplacian matrix
Z Indicator matrix for a partition
D Degree matrix
X Matrix of eigenvectors
SC Snapshot cost
TC Temporal cost
α Parameter that reflects the user’s emphasis on the snapshot cost
β Parameter that reflects the user’s emphasis on the temporal cost (β = 1− α)
Lpcq Laplacian matrix for preserving cluster quality
Lpcm Laplacian matrix for preserving cluster membership
λi The ith eigenvalue
U Matrix containing the eigenvectors
Lt Laplacian for efficient evolutionary spectral clustering
P Low-rank matrix approximation of the similarity matrix
Y Permutation matrix used to compute the cluster assignment
Ci Cluster assignment of the ith data point
NMI Normalized mutual information
MI Mutual information
H(Ct) Entropy of partition Ct

THRdeg Threshold used to terminate the efficient evolutionary spectral clustering
THR Threshold used to terminate the incomplete Cholesky decomposition
ρi Local density
dc Cutoff distance
δi Minimum distance from snake Ti to the higher-density snakes
θi Parameter used to find the potential cluster centers
τi Distance from the snake Ti to the area with lower density
γ Parameter used to select the cluster centers
α0 User-defined parameter used to identify the cluster center
β0 User-defined parameter used to identify the cluster center
H Entropy used to find dc
TH Threshold used to find the number of clusters
µ(ρi) Mean value used to select TH
σ(ρi) Standard deviation used to find TH
gap Maximum difference between two successive eigenvalues
M Modularity variable
CCD Connected cluster dissimilarity

Algorithms 2022, 15, 76 34 of 35

References
1. Pojani, D.; Stead, D. Sustainable Urban Transport in the Developing World: Beyond Megacities. Sustainability 2015, 7, 7784–7805.

[CrossRef]
2. Farhi, N.; Phu, C.N.V.; Amir, M.; Haj-Salem, H.; Lebacque, J.P. A Semi-decentralized Control Strategy for Urban Traffic. Transp.

Res. Procedia 2015, 10, 41–50. [CrossRef]
3. Ognjenović, S.; Zafirovski, Z.; Vatin, N. Planning of the Traffic System in Urban Environments. Procedia Eng. 2015, 117, 574–579.

[CrossRef]
4. Leontiadis, I.; Marfia, G.; Mack, D.; Pau, G.; Mascolo, C.; Gerla, M. On the Effectiveness of an Opportunistic Traffic Management

System for Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1537–1548. [CrossRef]
5. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. Driving with knowledge from the physical world. In Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011.
6. Saeedmanesh, M.; Geroliminis, N. Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic

networks. Transp. Res. Part B 2017, 105, 193–211. [CrossRef]
7. Ji, Y.; Geroliminis, N. On the spatial partitioning of urban transportation networks. Transp. Res. Part B 2012, 46, 1639–1656.

[CrossRef]
8. Saeedmanesh, M.; Geroliminis, N. Clustering of heterogeneous networks with directional flows based on “Snake” similarities.

Transp. Res. Part B Methodol. 2016, 91, 250–269. [CrossRef]
9. Nanni, M.; Pedreschi, D. Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 2006, 27, 267–289. [CrossRef]
10. Jeung, H.; Shen, H.T.; Zhou, X. Convoy queries in spatio-temporal databases. In Proceedings of the 2008 IEEE 24th International

Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; pp. 1457–1459.
11. El Mahrsi, M.K.; Rossi, F. Modularity-based clustering for network-constrained trajectories. arXiv 2012, arXiv:1205.2172.
12. El Mahrsi, M.K.; Rossi, F. Graph-Based Approaches to Clustering Network-Constrained Trajectory Data. 2012. Available online:

http://xxx.lanl.gov/abs/1210.0762 (accessed on 19 January 2022).
13. Kouvelas, A.; Saeedmanesh, M.; Geroliminis, N. Enhancing model-based feedback perimeter control with data-driven online

adaptive optimization. Transp. Res. Part B 2017, 96, 26–45. [CrossRef]
14. Khalid, A.; Umer, T.; Azfal, M.; Anjum, S.; Sohail, A.; Asif, H.M. Autonomuous data driven surveillance and rectification system

using in vehicle sensors for intelligence transportation system (ITS). Comput. Netw. 2018, 139, 109–118. [CrossRef]
15. Chen, C.; Xiang, H.; Qiu, T.; Wang, C.; Zhou, Y.; Chang, V. A rear end collision prediction scheme based on deep learning in the

internet of vehicles. Parallel Distrib. Comput. 2018, 117, 192–204. [CrossRef]
16. Tuffery, S. Data Mining and Statistics for Decision Making, 2nd ed.; John Wiley and Sons, Ltd.: Chichester, UK, 2011; pp. 43–91.
17. Lopez, C.; Krishnakumari, P.; Leclercq, L.; Chiabaut, N.; Lint, H.V. Spatio-temporal partitioning of transportation network using

travel time data. Transp. Res. Rec. J. Trasp. Res. 2017, 2623, 98–107. [CrossRef]
18. Chi, Y.; Song, X.; Zhou, D.; Hino, K.; Tseng, B.L. Evolutionary Spectral Clustering by Incorporating Temporal Smoothness. In

Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, USA,
12–15 August 2007.

19. Al Alam, P.; Hamad, D.; Constantin, J.; Constantin, I.; Zaatar, Y. Dynamic Partitioning of Transportation Network Using
Evolutionary Spectral Clustering. In Proceedings of the Smart Applications and Data Analysis,Third International Conference,
Marrakesh, Morocco, 25–26 June 2020; pp. 178–186.

20. Dinh, D.T.; Fujinami, T.; Huynh, V.N. Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette
Coefficient. In International Symposium on Knowledge and Systems Sciences; Springer: Singapore, 2019; pp. 1–17.

21. Astolfi, D.; Pandit, R. Multivariate Wind Turbine Power Curve Model Based on Data Clustering and Polynomial LASSO
Regression. Appl. Sci. 2022, 12, 72. [CrossRef]

22. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. B 2001,
63, 411–423. [CrossRef]

23. Salvador, S.; Chan, P. Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, 15–17 November
2004; pp. 576–584. [CrossRef]

24. Lopez, C. Modélisation Dynamique du Trafic et Transport de Marchandises en Ville: Vers une Approche Combinée. Ph.D. Thesis,
Université de Lyon, Lyon, France, 2017.

25. Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 2007, 17, 395–416. [CrossRef]
26. Shi, J.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905.
27. Langone, R.; Van Barel, M.; Suykens, J.A. Efficient evolutionary spectral clustering. Pattern Recognit. Lett. 2016, 84, 78–84.

[CrossRef]
28. Frederix, K.; Barel, M.V. Sparse spectral clustering method based on the incomplete Cholesky decomposition. J. Comput. Appl.

Math. 2013, 237, 145–161. [CrossRef]
29. Meila, M. Comparing clusterings—An information based distance. J. Multivar. Anal. 2007, 98, 873–895. [CrossRef]
30. Li, Z.; Tang, Y. Comparative density peaks clustering. Expert Syst. Appl. 2018, 95, 236–247. [CrossRef]

http://doi.org/10.3390/su7067784
http://dx.doi.org/10.1016/j.trpro.2015.09.054
http://dx.doi.org/10.1016/j.proeng.2015.08.216
http://dx.doi.org/10.1109/TITS.2011.2161469
http://dx.doi.org/10.1016/j.trb.2017.08.021
http://dx.doi.org/10.1016/j.trb.2012.08.005
http://dx.doi.org/10.1016/j.trb.2016.05.008
http://dx.doi.org/10.1007/s10844-006-9953-7
http://xxx.lanl.gov/abs/1210.0762
http://dx.doi.org/10.1016/j.trb.2016.10.011
http://dx.doi.org/10.1016/j.comnet.2018.04.008
http://dx.doi.org/10.1016/j.jpdc.2017.08.014
http://dx.doi.org/10.3141/2623-11
http://dx.doi.org/10.3390/app12010072
http://dx.doi.org/10.1111/1467-9868.00293
http://dx.doi.org/10.1109/ICTAI.2004.50
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1016/j.patrec.2016.08.012
http://dx.doi.org/10.1016/j.cam.2012.07.019
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1016/j.eswa.2017.11.020

Algorithms 2022, 15, 76 35 of 35

31. Zhang, H.; Kiranyaz, S.; Gabbouj, M. Data Clustering Based on Community Structure in Mutual k-Nearest Neighbor Graph. In
Proceedings of the 41st International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July
2018; pp. 262–268.

32. Yan, H.; Lu, Y.; Ma, H. Density-based Clustering using Automatic Density Peak Detection. In Proceedings of the International
Conference on Pattern Recognition Applications and Methods, Madeira, Portugal, 16–18 January 2018.

33. Wang, S.; Wang, D.; Li, C.; Li, Y. Comment on “Clustering by Fast Search and Find of Density Peaks”. 2015. Available online:
http://xxx.lanl.gov/abs/1501.04267 (accessed on 19 January 2022).

34. Yu, L.; Ding, C. Network community discovery: Solving modularity clustering via normalized cut. In Proceedings of the Eighth
Workshop on Mining and Learning with Graphs, Washington, DC, USA, 24–25 July 2010.

35. Scott, W.; Padhraic, S. A Spectral Clustering Approach To Finding Communities in Graphs. In Proceedings of the 2005 SIAM
International Conference on Data Mining, Newport Beach, CA, USA, 21–23 April 2005

36. Ng, A.Y.; Jordan, M.I.; Weiss, Y. On spectral clustering: Analysis and an algorithm. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 3–8 December 2001.

37. Xu, K.; Kliger, M.; Hero, A. Adaptive evolutionary clustering. Data Min. Knowl. Discov. 2014, 28, 304–336. [CrossRef]
38. Hong, C.; Jingjing, Z.; Chunfeng, C.; Qinyu, C. Solving large-scale assignment problems by Kuhn-Munkres algorithm. In

Proceedings of the 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics, Hangzhou,
China, 9–10 April 2016.

http://xxx.lanl.gov/abs/1501.04267
http://dx.doi.org/10.1007/s10618-012-0302-x

	Introduction
	Methodology
	Graph Models
	Network of Links
	Graph of Links
	Graph of Snakes

	Similarity
	Spectral Clustering
	Evolutionary Spectral Clustering
	Preserving Cluster Quality (PCQ)
	Preserving Cluster Membership (PCM)

	Efficient Evolutionary Spectral Clustering Algorithm

	Automatically Choosing the Number of Clusters
	Density Peaks Algorithm
	Eigengap Heuristic
	Modularity

	Experimental Results
	Transportation Network
	Snake Length and Weight Coefficient Optimization
	Comparative Study for the Automatic Selection of the Number of Clusters
	Comparative Study between the Spectral Clustering Algorithms

	Conclusions
	Code and Data Availability Policies
	References

