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Today, the deployment of sensing technology permits the collection of 
massive amounts of spatiotemporal data in urban areas. These data can 
provide comprehensive traffic state conditions for an urban network 
and for a particular day. However, data are often too numerous and too 
detailed to be of direct use, particularly for applications such as delivery 
tour planning, trip advisors, and dynamic route guidance. A rough esti-
mate of travel times and their variability may be sufficient if the informa-
tion is available at the full city scale. The concept of the spatiotemporal 
speed cluster map is a promising avenue for these applications. How-
ever, the data preparation for creating these maps is challenging and 
rarely discussed. In this study, that challenge is addressed by introduc-
ing generic methodologies for mapping the data to a geographic infor-
mation system network, coarsening the network to reduce the network 
complexity at the city scale, and estimating the speed from the travel 
time data, including missing data. This methodology is demonstrated 
on the large-scale urban network of Amsterdam, Netherlands, with real 
travel time data. The preprocessed data are used to build the spatio-
temporal speed cluster by using three partitioning techniques: normal-
ized cut, density-based spatial clustering of applications with noise, and 
growing neural gas (GNG). A new posttreatment methodology is intro-
duced for density-based spatial clustering and GNG, which are based on 
data point clustering, to generate connected zones. A preliminary cross 
comparison of the clustering techniques shows that GNG performs 
best in generating zones with minimum internal variance, the normal-
ized cut computes three-dimensional zones with the best intercluster  
dissimilarity, and GNG has the fastest computation time.

Graph partitioning is a common challenge in several fields such as 
transportation (1, 2) and image segmentation (3). Partitioning a het-
erogeneous network, such as an urban network, into homogeneous 
zones can be extremely useful for many applications. At least three 
applications are distinguished that can be improved by using three-
dimensional (3-D) homogeneous regions: traffic control, macroscopic 
traffic modeling, and route guidance:

1.	 For traffic control purposes, traffic management schemes can 
be identified for regions of a heterogeneous network (4, 5). Traffic 

signal control is computationally expensive for a large network (6), 
especially if the scheme is required to be generated in real time (7). 
Developing a scheme at a regional level is computationally more 
plausible than that at a link level. A time-adaptive scheme can be 
considered from the 3-D regions.

2.	 The macroscopic fundamental diagram is more likely to be 
well defined in a homogeneous network (8–12). Refining the equi-
librium analysis by zone is a promising approach to investigate the 
effect of route choice behavior (13). Partitioning methods make it 
possible to define subregions within a network; this approach is essen-
tial for a multireservoir modeling approach such as the macroscopic 
fundamental diagram modeling framework (10, 14). This macro
scopic scale model facilitates the development of traffic management  
strategies.

3.	 Tour planning, trip advisors, and dynamic route guidance can 
be refined by network partitioning results. The routing models can 
calculate the least-cost routes including the day-to-day 3-D regions; 
that is, the travel time objective function f (t, x) is refined by the 
space–time properties of the 3-D regions. An investigation can be 
made to identify the best time to start a journey by minimizing the 
total route time through a spatiotemporal network.

To this end, Ji and Geroliminis investigate the performance of 
k-means in partitioning urban networks by considering spatial loca-
tions of the road as new features in the data (1). Saeedmanesh and 
Geroliminis (2) elaborate a second method based on the definition 
of a similarity matrix between observations and the application of 
the normalized cut (Ncut) algorithm (3). Such regions are defined in 
two dimensions; that is, only measurements of a single time period 
are considered to identify homogeneous areas. The question of traf-
fic dynamics is only addressed by iterating the algorithms for each 
time step without direct connections between the two-dimensional 
(2-D) clusters (a quasi-stationary approximation). The intercluster 
dissimilarity is a central property in these studies because the main 
targeted application is traffic control.

To perform network partitioning, both the network topology and 
the link speeds for all time periods are needed. However, real data 
are often flawed and incomplete, especially data collected by classic 
urban measurements. Therefore, data preparation is needed to create 
a validated data set for partitioning. The aim of the data prepara-
tion is to (a) remove travel time outliers, (b) coarsen the large-scale 
network to improve the computation time, and (c) estimate speed, 
including an extension for missing data. In this study, methodologies 
are introduced that address these issues. Real data gathered from 
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the Amsterdam, Netherlands, urban area were used. The network  
topology is derived from both cameras and geographic information 
system (GIS) data from Open Street Maps. In the Amsterdam case, 
not all speeds are available for every time period. This deficiency 
necessitates the development of algorithms to impute these missing 
data. In the next section the estimation of missing data and how to 
minimize the problem of missing data are discussed. Based on a 
complete (albeit partially imputed) record of all data, the Amster-
dam network can now be used to assess the performance of different 
partitioning techniques.

Two classes of clustering techniques are investigated: an exten-
sion of Ncut based on a new expression of the similarity matrix, 
called “snakes” (1, 2), and classical methods such as density-based 
spatial clustering of applications with noise (DBSCAN) and growing 
neural gas (GNG) from the data-mining field. These clustering tech-
niques are used to construct 3-D clusters of road links based on their 
average speed. It is necessary to ensure that all clusters contain a  
single connected component (CC) in order for all links to be reached 
within the same clusters. This requirement is central for applications 
like travel time estimation or macroscopic traffic modeling. Cluster-
ing consists of finding the optimal decomposition of the graph into 
a CC with the lowest internal variance of the speed while retaining 
a reasonable intercluster dissimilarity. However, the classical meth-
ods that are used here—DBSCAN and GNG—produce unconnected 
clusters. Hence, a new posttreatment method is introduced in this 
work to generate CCs from unconnected clusters in two and three 
dimensions.

The methodology for building both a validated network and a 
speed data set for partitioning is described next. Then the construc-
tion of the 3-D CCs using the three clustering techniques along with 
the posttreatment and cross-evaluation criteria is described.

Data Preparation

Network Reconstruction

In the current study, raw data are the individual travel times from 
the city of Amsterdam. The data include the ID and location of 
the start and end cameras, recorded individual passing times, and 
travel times for 41 days. There is a total of 314 unique pairs of start 
and end camera observations in the data for all the days. The first 
step to build a network from this data set is to create a route table. 
For this purpose, the camera needs to be located on the Amster-
dam GIS network obtained from OpenStreetMaps, which consists 
of 147,059 links and edges as shown in Figure 1a. Mapping the 
camera coordinates to the GIS network is required since these 
coordinates may not be located in the road, and hence location cor-
rection (snapping) is needed. This snapping is done by determin-
ing the point-to-segment distance to find the nearest location in the 
network. Once the coordinates have been snapped to the network 
graph, the path between the start and end camera locations is found. 
Various path-finding algorithms are available in the literature. 
For this work, the shortest path was found by using the algorithm 
employed in the OpenStreet Maps Routing Machine, which is based 
on contraction rules (15). This algorithm is fast and robust for real-
time applications. There were 314 pairs of start and end cameras 
leading to 314 shortest paths. Mapping these paths to the Amster-
dam GIS network provides a network with 7,512 links as shown in 
Figure 1b.

Network Coarsening

After the shortest path to the Amsterdam GIS network is mapped, 
there are still 7,512 links, quite a large amount. Hence, network 
coarsening techniques were employed to remove nodes that satisfy 
certain criteria. The idea behind coarsening is that a multiscale graph 
Gi+1 can be constructed from the previous fine-scale graphs Gi by 
collapsing the nodes that have similar matching criteria. The match-
ing criteria can differ according to the application. In this study, 
the matching criterion relates to the differences in edge weights. 
Here these weights represent the speed of each link or edge. If the 
edges have the same weight, the node that connects the edges will 
be collapsed or removed. The network coarsening here is based on 
a constrained version of contraction hierarchies (14).

The construction of the coarsened graph in this work is based 
on three steps: (a) the nodes are prioritized or ranked for contrac-
tion; that is, a node with a lower rank is removed before a node with 
a higher rank; (b) the contraction rules are determined on the basis 
of the edge difference; and (c) the new weights of the link for the 
coarse graph are calculated. In this work, the contraction rules are 
governed by the edge weights and the connectivity of the network. 
The weight for each link or edge is the estimated speed of each link. 
The weight wuv of link (u, v) is the speed of the link suv. Since only 
speed is required for one time slice to assign the weights, a peak  
period time slice (4:00 p.m.) was chosen because the network will 
exhibit the most variance during peak periods with most links 
having different speeds at this time. If a non–peak period is chosen, 
these variances will be smoothed out. A more detailed description 
of node ranking and the contraction rules are given next.

Node Ranking

The order in which the nodes are removed is important for graph 
coarsening. There are different node ranking or ordering techniques 
as introduced in relation to contraction hierarchies (15). In this 
work, the nodes are ordered on the basis of their densities. The more 
neighbors the node has, the higher the rank is, and the lower the 
chance that the node will be removed. A dense node might connect a 
lot of edges and might be important for transportation applications. 
Given a graph G = (V, E ) with node set V and an edge set E, suppose 
that (u, v) ∈ E, where u, v ∈ V; then the rank of the nodes u and v will 
satisfy the following condition:

r u r v n u n v( ) ( ) ( ) ( )> >if (1)

where n(u) and n(v) are the number of neighbors of nodes u and v, 
respectively. Thus, based on the contraction rule, v will be contracted 
before u. The neighbors of the node are found by determining all the 
incoming and outgoing links from the node. A link (u, v) is said to 
be incoming with regard to node v if v is the target node of the link 
and outgoing if v is the source node. Once the neighbors are found 
for all the nodes, the nodes are sorted on the basis of their ranks in 
ascending order with the lowest rank first.

Contraction Rules

Once the nodes are sorted according to rank, the contraction rules 
are used to remove them. First, a criterion has to be set to decide if 
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the given node is eligible for contraction to decrease the complex-
ity. The criterion is that if the node removal results in the same or 
an increased number of links than before removal, the node is not 
removed. Table 1 presents an overview of different cases of node  
contraction. The link color represents weights; different colors imply 
different weights. For example, in Case 5, removing the nodes results 
in four new links, the same number of links as before node contrac-
tion. Hence, this node will not be considered for removal. It is also 
observed that in the majority of cases, contracting nodes with more 
than four neighbors leads to five or more links. Therefore, an initial 
constraint is imposed on the node contraction to only contract nodes 
with neighbors less than or equal to four links as given below:

c v
n v

( )
( )

=
≤






1 if 4

0 otherwise
(2)1

A given node v will be contracted only if c1(v) is equal to 1, where 
c1(v) is the criterion. When the initial criterion has been satisfied for 
a given node v, the edge difference is then used as the next rule for 
inclusion or exclusion of that node for contraction:

c u v w
w wuv vw

( ) =
− ≤




, ,
1 if threshold

0 otherwise
(3)2

(a) (b)

(c)

FIGURE 1    Camera data to validated network: (a) Amsterdam GIS network with 147,059 links, (b) shortest paths mapped to network with 
7,512 links, and (c) coarsened network with 411 links.
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where wuv and wvw are the weights of the links (u, v) and (v, w), 
respectively. In this work, the weight is the estimated speed for each 
link. The threshold was set to zero so that nodes can be contracted 
only if the links have the same speed.

On the basis of these two criteria, the rule sets for node contrac-
tion are now discussed. Given the nodes that have been ranked, the 
steps for coarsening are as follows:

1.	 Set the node with the lowest rank as v.
2.	 Check if c1(v) is satisfied.
3.	 If it is satisfied, all the incoming and outgoing links of node v 

are found. If c1(v) returns 0, go to Step 9.
4.	 Pair all the incoming and outgoing links while considering the 

direction. For example, in Case 6 of Table 1, if (u, v), (x, v), and 
( y, v) are the incoming links and (v, w) is the outgoing link, the pairs 
are (u, v, w), (x, v, w), and (y, v, w).

5.	 A U-turn is not considered in this work, and thus (u, v, u) is not 
considered as a valid pairing, as shown in Case 2 of Table 1.

6.	 Check if the c2 criterion is satisfied for all the valid incoming– 
outgoing pairs.

7.	 If one of the pairs does not satisfy the condition, assign the 
next node in the rank list as v and repeat from Step 2.

8.	 If c2 is satisfied for all pairs, the node is removed from the 
node list and the node ranking is updated as new links are formed. 
Repeat from Step 1.

9.	 Stop the iteration.

In the Case 4 of Table 1, the node cannot be contracted since 
the edge difference did not satisfy the threshold criterion. The node 
coarsening is applied to the mapped Amsterdam network with 
7,512 links. As explained before, the peak period was estimated to 
be around 4:00 p.m. and hence the speed at this time slice is used 
for the network coarsening. The new coarsened network contains 
411 links as shown in Figure 1c.

Speed Estimation

This section describes the methodology to estimate the link speed 
based on individual travel times recorded by the cameras. First, a 
cleansing process removes outliers. Second, the speed is estimated 
for each time period.

The moving average process was used to remove travel time 
outliers. There are usually alternative paths for a given origin–
destination (O-D) pair. They can be k-shortest paths, representing  
the common route choices. Travel times significantly higher than 
the distribution were defined as outliers. To remove them, two 
approaches were proposed: the first was to treat the travel times 
higher than the third quantile as outliers. In order to keep the dynam-
ics, distributions can be split by periods. The disadvantage of this 
approach is that the distribution is sensitive to the number of obser-
vations. Thus, outliers can be smoothed into time periods with few 
travel times. The second approach for removing the outliers is based 
on the moving average process. The moving average –τ is defined as

k
n n i

i

k

∑τ = τ −
=

−1
(4)

0

1

where τn is the nth realized travel time. Outliers are defined by  
–τn + Δτ, where Δτ is the travel time window. In this study, Δτ was 
set to the standard deviation of the peak demand; Δτ was tuned by a 
graphical inspection of the effects of Δτ on the number of outliers. 
Only the upstream window was considered to remove travel time 
outliers since the downstream window is not relevant for the current 
study; that is, fast travel times could not be considered outliers. The 
travel time window is refined after two iterations. Figure 2 gives an 
example with the x-axis being the observed time and the y-axis the 
travel time. The red curve is the moving average and the black curve 
represents the upstream travel time window. Individual travel times 
were aggregated by period. The mean of individual travel times was 
considered for a given O-D at a given period.

An O-D denoted by odi is characterized by a succession of links 
Li = (l1, l2, . . . , ln); that is, it represents a path. The first shortest path 
was used to keep speed estimation zones compact. During a given 
period t, the travel time of odi is tt(i,t). Then it is easy to estimate the 
speed of the path i by

( )=
dist

,

s
L

tt
i

i

i t

It can occur that a given link lk belongs to different O-D paths, 
that is, lk ∈ (od1, od2, . . . , odm). For this case, its speed is defined as 
the mean of the corresponding speeds of the paths.

When no data are available to measure tt(i,t), three approaches 
were distinguished to estimate the speed. The first approach sets 
links without data to the limited speed, which does not consider traf-
fic lights. It was assumed that setting limited speed at links without 
data would increase the variance of the zones. The second approach 
computes a new speed value through the speeds of a specific neigh-
borhood. It was assumed that the average speed of a given specific 
neighborhood would smooth the speed. Thus, congestion pockets 
can be less homogeneous and location zones can be less identifiable 
in space and time. The phenomenon is more common with a link 
belonging to the boundaries of the zones; that is, the link without 
data is being connected with links from different zones.

TABLE 1    Examples of Node Contraction Rules 

Case Some Cases of Node Removal Results of Node Removal

1

2

3

4 na

5

6

Note: na = not applicable.
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The third approach duplicates the speed from an identified link. 
It was assumed that the duplication of speed minimizes the speed 
variance of zones. The third approach used a cost function. Let  
G = (V, E) be the weighted graph, where Nv and Ne are the num-
bers of vertices and edges, respectively, A is the directed adjacency 
matrix of the network, C is the directed weight matrix, and D is the 
cost path matrix. A represents the relationship of the finite graph G. 
In this study, G is the graph of the 3-D network, that is, a repetition 
of the same network at Nt time slices. Through time, a vertex vi is con-
nected to itself at time steps t + 1 and t − 1, where t ∈ (1, Nt). Its edge 
weight is set to the period duration. Through the space, the edge 
weight is denoted cij, where i and j are connected links. Directions 
are considered to set the edge weight. For a given edge, if vertex j 
named vj is downstream to vi, the edge weight is

( )=
length

c
l

s
ij

j

j

else if vertex vj is upstream to vi, the weight cost is

( )=
length

c
l

w
ij

j

where w is the backward wave speed, which is set to 5 m/s in this 
study. If no data are available for vj, which is downstream to vi, then

( ) ( )= +max
max

2
s s

s
j

Dijkstra’s algorithm is used to estimate the shortest path between 
two vertices i and j in G (16). The cost of the shortest path is denoted 
Dij. Thus, the link without data will be assigned the speed of the 
most relevant link, which is identified as the link that minimizes 

the cost function. For computational efficiency, the process is per-
formed strictly for links without data and a time window is used to 
constrain the search for the relevant link.

Experimental Setup

The data preparation process—the coarsening methodology and 
the speed estimation of the link—considers a weighted directed 
network. The partitioning methods used in this study require a 
strongly connected graph; that is, a directed path exists for every 
pair of vertices. A real network is strongly connected when a 
vehicle can reach any link from any starting point. For both fine 
and coarse resolution networks, this constraint is not true. Thus, 
direction is not a convenient attribute to partition the Amsterdam 
network.

This study application focuses on only 1 day of data. This given 
day is a common weekday. The analyzed period is from 7:00 a.m. to 
5:00 p.m. It is a time window of 8 h, one-third of a day representing 
the morning peak demand. After the travel time data were analyzed, 
it was found that not all of the O-Ds are used on all days. Only 
used O-Ds were considered for reconstructing the network based 
on the shortest path finding in the network with 411 links. They are 
mapped to create a new coarsened network as explained earlier. 
From the O-Ds used, around 16% of the data is missing.

Spatiotemporal Partitioning Techniques

Normalized Cut Based on Snake Similarities

One of the contributions of this study is to adapt the existing meth-
odology of snakes for a spatiotemporal network that is a repetition of 
the same network at numerous time slices. A snake is composed 
of a sequence of links, which iteratively grows by adding adjacent 
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FIGURE 2    Travel times exceeding travel time window (black curve), which are 
considered travel time outliers.
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links that are similar to itself (2). The connectivity is ensured by a 
link addition constraint, which considers links strictly belonging 
to the neighborhood of the snake. Let Si be the snake initialized 
by the link li, where Sik ∈ Si is the subset containing the first k ele-
ments. For a fixed time, the neighborhood of Sik of a given snake is 
defined as the links spatially connected to it. This neighborhood was 
considered in both space and time. The link li at time t is denoted 
by l(i,t). Duplicates of link l(i,t) were made at instants t − 1 and t + 1 
and denoted l(i,t+1) and l(i,t−1), respectively. The snake similarities are 
defined as follows (2):

∑ ( )=
=

intersect , (5)
1

w p S Sij
k

ik jk

k

N

where the weight coefficient p is fixed to p ≤ 1. Let W be the snake 
similarities matrix with W(i, j) = wij. Ncut is a measure of dissociation 
based on this W (3). The complexity of Ncut is NP-complete.

One of the main inconveniences of the snake is its heavy com-
putational cost. The complexity to run a snake is O(n) for the best 
case and O(n2) for the worst case, where n = Nl and n = Nl ∗ Nt for 
a spatial snake and a spatiotemporal snake, respectively. The com-
plexity of running n snakes is O(n2) for the best case and O(n3) for 
the worst case. The growing snake algorithm searches its neighbors 
iteratively. The neighborhood size depends on the growing snake 
pattern and the network topology. In particular, the neighborhood 
of a snake growing in a corridor is equal to 2 (the upstream and 
the downstream neighbors of the current snake). It is much smaller 
than the neighborhood of a snake growing in a strongly connected 
network, that is, a network in which every node has a link with every 
other node. Both these examples correspond to the best and the 
worst cases. Their associated complexities are, respectively, O(n2) 
and O(n3). Any realistic situation is between these boundaries. For 
example, the complexity of the algorithm in this case study was 
numerically investigated. It was shown that it is O(n2.2), where 
2.2 was obtained by a regression of the complexity on the snake’s 
length n. It can be seen that the similarities decrease exponentially 
with the weight coefficient p.

A sensitivity analysis was done to investigate the performance of 
snakes for different lengths. Results show that the quality of Ncut 
partitioning is independent of the snake length. Nevertheless, the 
snake length, k, has to be set at a minimal threshold to keep the con-
nectivity. Thus, too short a snake cannot discover the entire topol-
ogy of the network in both space and time. The short snake length 
may also provide cluster results in which a cluster contains links 
that are not all connected with each other. Therefore, the length was 
set to 38% of the spatiotemporal size of the network. In addition, the 
weight coefficient was set to p = 0.8.

Partitioning Based on Data Point Clustering

The two other classic clustering methods that are considered for 
this study are GNG (17) and DBSCAN (18). The 3-D network was 
represented in a data set containing four variables—link coordinates 
with their corresponding speed and time measurement (x, y, t, s). 
These four quantitative variables were normalized. After normaliza-
tion, the speed column was multiplied by a fixed coefficient equal 
to 3 to be sure that speed is the predominant variable over spatial  
and temporal coordinates during clustering.

1.	 DBSCAN is a density-based method. It has two user-specified 
parameters. The radius parameter ε > 0 specifies the radius neigh-
borhood and the MinPts parameter specifies the density threshold 
of dense regions. For the current study, the parameters were set to  
ε = 0.01 and MinPts = 50.

2.	 GNG is an artificial neural network variant of neural gas (19). 
GNG begins with two neurons and the network grows during the 
execution of the algorithm. GNG was adapted for clustering through 
a two-step process: running GNG and reconstructing data point 
clusters based on GNG centroids. The user-specified parameters are  
the number of centroids N; the maximum number of iterations m, L; 
the adaptation threshold εb, εn; the neighborhood size α, δ; and the 
time T, which were set as N = 10, m = 20, L = 50, εb = 0.2, εn = 0.005, 
α = 0.5, δ = 0.995, and T = 50.

The clustering results provide clusters that are not connected, as 
shown in Figure 3a. The homogeneous zone partition needs to be 
a single connected cluster. Therefore, posttreatment is needed on 
the clusters; that treatment is obtained from DBSCAN and GNG to 
obtained CCs with minimum intercluster speed variance. The three 
steps for the posttreatment algorithm are

•	 Identifying the CCs in each of the clusters,
•	 Assigning the biggest CCs as the initial clusters, and
•	 Assigning all the other CCs to the initial clusters.

Given that there are N number of clusters from the data point 
clustering methods, there might be more than one CC for each clus-
ter, as shown in Figure 3a. Ideally each cluster should contain a 
single CC. In order to achieve this arrangement, all CCs within each 
cluster are identified. Then these CCs are sorted according to the CC 
size. Given that the target cluster size is M, the biggest M CCs from 
different clusters are chosen as the initial cluster. This process is 
illustrated with a simple example in Figure 3. In Figure 3a, there are 
two CCs in the blue cluster, one CC in red, one CC in green, and so 
on. It can be clearly seen that there are two CCs for the blue cluster.

Assuming that there is a total of X CCs from all the clusters, there 
are (X − M) clusters that still need to be assigned to one of the initial 
clusters. The rest of the (X − M) CCs are merged with the M initial 
cluster and the following two parameters are found for each pair:

c x m
x m

x m
( ) =

∩

∩





,
1 if is connected

0 if is not connected
(6)

v x m
s s x m

x m

x m

( )
( )

=
∩

∞ ∩






,

variance , if is connected

if is not connected
(7)

where x ∈ (X − M) CCs, m ∈ M initial CCs, and sx and sm are the 
speed of each cluster. Once the c(x, m) and v(x, m) have been calcu-
lated for all the CC pairs, the (X − M) CCs are sorted in decreasing 
order according to the Σ c(x, m) for all m ∈ M CCs. The x CC with 
the largest Σ c(x, m) is selected, and it is merged with the initial 
cluster m, which has c(x, m) = 1 and the smallest variance v(x, m) 
among all the m ∈ M. Once merged, this cluster is removed from 
the (X − M) CCs, and c(x, m) and v(x, m) are updated for all (X − M) 
CCs as the initial clusters are updated. This process is repeated until 
all the (X − M) CCs are assigned to the M initial cluster.
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Figure 3 shows an example of posttreatment results in two and 
three dimensions. Figure 3a shows the cluster before posttreatment 
and Figure 3b shows posttreatment with the same number of clus-
ters as the input for a single time slice. Figure 3d shows the result 
of the posttreatment in three dimensions with same number of clus-
ters as the input shown in Figure 3c. There is no difference in the 
methodology between the 2-D and 3-D posttreatments. The only 
difference is in calculating the 3-D adjacency matrix for finding the 
3-D CCs and the connectivity. The 3-D adjacency matrix is defined 
by creating bidirectional links between the  time slices.

Evaluation Metrics

The three clustering techniques were compared by using three 
indicators in this study: total variance normalized (TVn), con-
nected clusters dissimilarity (CCD), and time computation. TV is 
the original indicator of the snake similarities partitioning and is 
defined as TV = ∑A∈CNA ∗ Var(A) (1). TV was normalized by using 
the following equation:

∑ ( )
= ∈TV

1
Var

(8)
2

�

n
N

N A

S

A

A C

This indicator is based on the assumption that a given cluster is com-
posed of links characterized by similar speeds. The speed variance is 
highlighted.

The second metric used is the CCD. The criterion is the dissimi-
larity between a given cluster and its neighboring cluster, that is, 
clusters touching the given cluster. CCD is defined as follows:

x xik i k

k i

n

i

n

ik

k i

n

i

n

∑∑

∑∑
=

δ −

δ

= +=

= +=

CCD (9)11

11

k i
ik

1 if and are connected clusters

0 otherwise
(10)δ



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(a) (b)

(c) (d)

FIGURE 3    Posttreatment results for data point clustering methods: (a) unconnected 2-D clusters before posttreatment, (b) connected 2-D 
clusters after posttreatment, (c) unconnected 3-D clusters before posttreatment, and (d ) connected 3-D clusters after posttreatment.
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The time computation indicator evaluates the computational cost 
of the algorithms. The complexity has to be considered for another 
size network and number of time slices. Two different fields of 
partitioning methods were compared: Ncut from the graph theory 
based on the snake similarities and DBSCAN and GNG from data 
point clustering. The basic data point clustering methods are faster 
but a posttreatment process is required. The computational cost of 
the posttreatment is heavy because it checks the connectivity of the 
previous results and iteratively updates the clusters. The time com-
putation evaluation includes both field partitioning methods and all 
the internal processes.

Results and Discussion

In this section, results from the three methods are analyzed and 
compared: Ncut based on snake similarities and DBSCAN and 
GNG with posttreatment. The comparison focuses on two conceptu-
ally different fields to partition a transportation network. Figure 4 
illustrates the partitioning results from the three methods under a 
fixed number of clusters set to 2. Neither of the data point clustering 
methods produces the same spatiotemporal zones by the posttreat-
ment algorithm. The zone shapes present a reasonable 3-D cover; 

that is, a given zone is roughly compacted by space and time. Three 
indicators were used to evaluate the three methods. TVn and CCD 
measure the quality of clusters representing the homogeneous zones 
and the intercluster dissimilarity, respectively. The time computa-
tion quantifies the computational cost applied to this case study. 
Figure 4, d and e, shows the TVn and CCD for a systematic number 
of clusters from two to nine. It can be observed that GNG is the best 
method to minimize TVn. Ncut is the best method to maximize the 
CCD. However, the time computation for GNG is found to be the 
fastest.

Figure 5, a, c, e, illustrates the GNG partitioning with different 
numbers of clusters ranging from two to four. Figure 5, b, d, f, shows 
histogram plots of link speed for each cluster. The maximal speed is  
around 40 m/s, corresponding to highway speed. The validated 
Amsterdam network used here contains both provincial roads and 
highways. The histogram validates that each cluster has a speed 
variance as low as possible. For example, in Figure 5d, most of the 
links in the blue cluster have a speed of 5 to 10 m/s. Only a few of 
the links in the blue cluster have speeds of 0 to 5 m/s compared with 
the orange cluster. This observation remains valid for all three cases 
shown here and proves the hypothesis that the cluster results from 
posttreatment provide clusters that are connected and that minimize 
the speed variance.
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FIGURE 4    Amsterdam network (7:00 a.m. to 5:00 p.m.) with 3-D clusters (n = 2) obtained with (a) Ncut based on snake similarities,  
(b) DBSCAN with posttreatment, and (c) GNG with posttreatment; and comparison of three partitioning methods by (d ) TVn, (e) CCD,  
and (f ) computation time.
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Conclusion and Future Work

This research describes a generic methodology to prepare data for 
transportation applications. The network was reconstructed from a 
GIS based on the coordinates of cameras and their corresponding 
recorded travel times. Coarsening techniques were also introduced to 
reduce the computational complexity. The speed was estimated from 
incomplete and flawed individual travel times. The validated network 
along with the estimated speed was used for partitioning.

Two concepts of spatiotemporal partitioning of a transportation 
network were compared in this work. Methods belonging to dif-
ferent fields were implemented: unsupervised learning and graph 
theory. The clustering approach considers links under a network as 
data points. This hypothesis allows the implementation of simple 

and efficient clustering algorithms, but it requires postprocessing 
for contiguity; that is, all clusters should be composed of a unique 
CC. In the second method, a transportation network at numerous 
time slices was considered as a graph. In this case, connectivity is 
considered through graph topology.

Three methodologies were presented to partition a network in both 
space and time; they were demonstrated in a coarsened Amsterdam 
city network. The partition criterion is the speed. The comparison 
between the three techniques was evaluated by two metrics: TVn 
and CCD. Preliminary results show that none of the partitioning  
methods is better with regard to both metrics. TVn measures the 
homogeneous zones, which can be spread throughout the 3-D net-
work keeping the connectivity. The CCD indicator focuses on the 
intercluster dissimilarity but can forsake the homogeneity. The 
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choice of a spatiotemporal partitioning method is a compromise 
between both criteria.

There are various future directions that can be pursued. The meth-
odology can be improved to be more generic and computationally 
efficient. A more extended comparison study needs to be imple-
mented. Also, only one day was considered in this work and the 
methodology can be iterated for several days. Another application 
that is promising for these spatiotemporal speed regions is that it can 
be used to derive future travel times. These claims still need to be 
researched and validated.
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